首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
大气科学   4篇
地球物理   1篇
地质学   1篇
天文学   14篇
自然地理   1篇
  2024年   1篇
  2023年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   5篇
  2006年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有21条查询结果,搜索用时 187 毫秒
11.
12.
Summary  Knowledge of ultraviolet radiation is necessary in different applications, in the absence of measurements, this radiometric flux must be estimated from available parameters. To compute this flux under all sky conditions one must consider the influence of clouds. Clouds are the largest modulators of the solar radiative flux reaching the Earth’s surface. The amount and type of cloud cover prevailing at a given time and location largely determines the amount and type of solar radiation received at the Earth’s surface. This cloud radiative effect is different for the different solar spectral bands. In this work, we analyse the cloud radiative effect over ultraviolet radiation (290–385 nm). This could be done by defining a cloud modification Factor. We have developed such cloud modification Factor considering two different types of clouds. The efficiency of the cloud radiative effect scheme has been tested in combination with a cloudless sky empirical model using independent data sets. The performance of the model has been tested in relation to its predictive capability of global ultraviolet radiation. For this purpose, data recorded at two radiometric stations are used. The first one is located at the University of Almería, a seashore location (36.83° N, 2.41° W, 20 m a.m.s.l.), while the second one is located at Granada (37.18° N, 3.58° W, 660 m a.m.s.l.), an inland location. The database includes hourly values of the relevant variables that cover the years 1993–94 in Almería and 1994–95 in Granada. Cloud cover information provided by the Spanish Meteorological Service has been include to compute the clouds radiative effect. After our study, it appears that the combination of an appropriate cloudless sky model with the cloud modification Factor scheme provides estimates of ultraviolet radiation with mean bias deviation of about 5% that is close to experimental errors. Comparisons with similar formulations of the cloud radiative effect over the whole solar spectrum provides evidence for the spectral dependency of the cloud radiative effect. Received November 15, 1999 Revised September 11, 2000  相似文献   
13.
We demonstrate the power of the local correlation tracking technique on stellar data for the first time. We recover the spot migration pattern of the long-period RS CVn-type binary σ Gem from a set of six Doppler images from 3.6 consecutive rotation cycles. The resulting surface flow map suggests a weak anti-solar differential rotation with α ≈ –0.0022 ± 0.0016, and a coherent poleward spot migration with an average velocity of 220 ± 10ms-1. This result agrees with our recent findings from another study and could also be confirmed theoretically. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
14.
Here, BV (RI)C broad band photometry and intermediate resolution spectroscopy in Hα region are presented for two rapidly rotating late‐type stars: EY Dra and V374 Peg. For a third rapid rotator, GSC 02038‐00293, intermediate resolution Hα spectroscopy and low resolution spectroscopy are used for spectral classification and stellar parameter investigation of this poorly known object. The low resolution spectrum of GSC 02038‐00293 clearly indicates that it is a K‐type star. Its intermediate resolution spectrum can be best fitted with a model with Teff = 4750 K and v sin i = 90 km s–1, indicating a very rapidly rotating mid‐K star. The Hα line strength is variable, indicating changing chromospheric emission on GSC 02038‐00293. In the case of EY Dra and V374 Peg, the stellar activity in the photosphere is investigated from the photometric observations, and in the chromosphere from the Hα line. The enhanced chromospheric emission in EY Dra correlates well with the location of the photospheric active regions, indicating that these features are spatially collocated. Hints of this behaviour are also seen in V374 Peg, but it cannot be confirmed from the current data. The photospheric activity patterns in EY Dra are stable during one observing run lasting several nights, whereas in V374 Peg large night‐tonight variations are seen. Two large flares, one in the Hα observations and one from the broadband photometry, and twelve smaller ones were detected in V374 Peg during the observations spanning nine nights. The energy of the photometrically detected largest flare is estimated to be 4.25 × 1031– 4.3 × 1032 erg, depending on the waveband. Comparing the activity patterns in these two stars, which are just below and above the mass limit of full convection, is crucial for understanding dynamo operation in stars with different internal structures (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
15.
We present more than 1000‐day long photometry of EY Draconis in BV (RI)C passbands. The changes in the light curve are caused by the spottedness of the rotating surface. Modelling of the spotted surface shows that there are two large active regions present on the star on the opposite hemispheres. The evolution of the surface patterns suggests a flip‐flop phenomenon. Using Fourier analysis, we detect a rotation period of Prot = 0.45875 d, and an activity cycle with P ≈ 350 d, similar to the 11‐year long cycle of the Sun. This cycle with its year‐long period is the shortest one ever detected on active stars. Two bright flares are also detected and analysed (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
16.
On February 28, 2021, a fireball dropped ∼0.6 kg of recovered CM2 carbonaceous chondrite meteorites in South-West England near the town of Winchcombe. We reconstruct the fireball's atmospheric trajectory, light curve, fragmentation behavior, and pre-atmospheric orbit from optical records contributed by five networks. The progenitor meteoroid was three orders of magnitude less massive (∼13 kg) than any previously observed carbonaceous fall. The Winchcombe meteorite survived entry because it was exposed to a very low peak atmospheric dynamic pressure (∼0.6 MPa) due to a fortuitous combination of entry parameters, notably low velocity (13.9 km s−1). A near-catastrophic fragmentation at ∼0.07 MPa points to the body's fragility. Low entry speeds which cause low peak dynamic pressures are likely necessary conditions for a small carbonaceous meteoroid to survive atmospheric entry, strongly constraining the radiant direction to the general antapex direction. Orbital integrations show that the meteoroid was injected into the near-Earth region ∼0.08 Myr ago and it never had a perihelion distance smaller than ∼0.7 AU, while other CM2 meteorites with known orbits approached the Sun closer (∼0.5 AU) and were heated to at least 100 K higher temperatures.  相似文献   
17.
The Hamburg (H4) meteorite fell on 17 January 2018 at 01:08 UT approximately 10 km north of Ann Arbor, Michigan. More than two dozen fragments totaling under 1 kg were recovered, primarily from frozen lake surfaces. The fireball initial velocity was 15.83 ± 0.05 km s?1, based on four independent records showing the fireball above 50 km altitude. The radiant had a zenith angle of 66.14 ± 0.29° and an azimuth of 121.56 ± 1.2°. The resulting low inclination (<1°) Apollo‐type orbit has a large aphelion distance and Tisserand value relative to Jupiter (Tj) of ~3. Two major flares dominate the energy deposition profile, centered at 24.1 and 21.7 km altitude, respectively, under dynamic pressures of 5–7 MPa. The Geostationary Lightning Mapper on the Geostationary Operational Environmental Satellite‐16 also detected the two main flares and their relative timing and peak flux agree with the video‐derived brightness profile. Our preferred total energy for the Hamburg fireball is 2–7 T TNT (8.4–28 × 109 J), which corresponds to a likely initial mass in the range of 60–225 kg or diameter between 0.3 and 0.5 m. Based on the model of Granvik et al. (2018), the meteorite originated in an escape route from the mid to outer asteroid belt. Hamburg is the 14th known H chondrite with an instrumentally derived preatmospheric orbit, half of which have small (<5°) inclinations making connection with (6) Hebe problematic. A definitive parent body consistent with all 14 known H chondrite orbits remains elusive.  相似文献   
18.
The Kri?evci H6 meteorite was recovered on the basis of fireball data obtained by the cameras of the Croatian Meteor Network. The fireball, which occurred on February 4, 2011, 23:20:40 UT, was also observed by meteor cameras in Slovenia and by the Autonomous Fireball Observatory in Martinsberg, Austria, which belongs to the European Fireball Network. Here, we present detailed data on fireball trajectory, velocity, deceleration, light curve, and orbit. We also modeled the atmospheric fragmentation of the meteoroid on the basis of the light curve and deceleration. The initial mass of the meteoroid was between 25–100 kg, most probably about 50 kg. Severe fragmentation occurred at heights of approximately 60 and 31 km, under dynamic pressures of 0.1 and 3 MPa, respectively. The peak absolute magnitude of ?13.7 was reached during the second severe fragmentation event. The recovered 291 g meteorite was probably the only fragment with a terminal mass exceeding 100 g. The orbit had a low inclination of 0.6 degrees, perihelion distance 0.74 AU, and semimajor axis 1.54 AU. Kri?evci can be ranked among the 10 best documented meteorite falls.  相似文献   
19.
We have observed EY Draconis with the 60‐cm telescope of Konkoly Observatory in Budapest for 64 nights. In the first observing season the star produced a stable light curve for more than 60 stellar rotations, however, the light curves observed in the next season and the spot modelling show clear evidence of the evolution of the spotted stellar surface. The changes of the maximum brightness level suggests the existence of a longer period of about 300 days, which seems to be confirmed by the ROTSE archival data. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
20.
Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l.), an inland location. The database includes hourly values of the relevant variables covering the years 1994/95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290/385 nm). After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those considered as urban. Although SMARTS2 provide slightly worse results, both models give estimates of solar ultraviolet irradiance with mean bias deviation below 5%, and root mean square deviation close to experimental errors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号