首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1533篇
  免费   42篇
  国内免费   24篇
测绘学   30篇
大气科学   120篇
地球物理   322篇
地质学   501篇
海洋学   161篇
天文学   355篇
综合类   5篇
自然地理   105篇
  2021年   12篇
  2020年   17篇
  2019年   28篇
  2018年   25篇
  2017年   27篇
  2016年   40篇
  2015年   31篇
  2014年   30篇
  2013年   89篇
  2012年   45篇
  2011年   69篇
  2010年   54篇
  2009年   55篇
  2008年   72篇
  2007年   70篇
  2006年   75篇
  2005年   44篇
  2004年   37篇
  2003年   40篇
  2002年   49篇
  2001年   50篇
  2000年   50篇
  1999年   31篇
  1998年   36篇
  1997年   34篇
  1996年   23篇
  1995年   31篇
  1994年   20篇
  1993年   18篇
  1992年   17篇
  1991年   12篇
  1990年   24篇
  1989年   24篇
  1988年   20篇
  1987年   23篇
  1986年   19篇
  1985年   11篇
  1984年   22篇
  1983年   18篇
  1982年   14篇
  1981年   24篇
  1980年   13篇
  1979年   29篇
  1978年   21篇
  1977年   19篇
  1976年   11篇
  1975年   11篇
  1974年   8篇
  1973年   8篇
  1972年   7篇
排序方式: 共有1599条查询结果,搜索用时 12 毫秒
991.
Multiple datasets have demonstrated that the crust of Mars is fundamentally basaltic. However, spectral libraries used to interrogate thermal infrared spectra of Martian dark regions through spectral deconvolution have heretofore lacked mafic glasses despite the importance of amorphous phases (or phases with amorphous-like spectral signatures) in Martian mineralogy. To establish the presence and importance of basaltic-to-intermediate glasses in Martian lithologies, we created five such glasses, obtained their thermal infrared spectra and included the spectra in a library used to deconvolve nine regional Thermal Emission Spectrometer spectra from Mars. We employed the nonnegative least squares (NNLS) deconvolution method, which yields deconvolved phase abundances and the uncertainties associated with those abundances. The basaltic-to-intermediate glasses do not appear in the deconvolution solutions, indicating they are not globally or regionally important phases. Because Martian igneous or impact processes are capable of basaltic-to-intermediate glass formation, the lack of such glasses in the deconvolved mineralogies suggests either the glasses did not form in detectable quantities or they (or their signatures) have been removed. The masking or replacement of basaltic-to-intermediate glasses through alteration is supported by the appearance in the deconvolution solutions of amorphous phases (e.g., silica-rich glasses, opal) or phases with amorphous-like spectral signatures (e.g., clays, zeolites) that commonly form through aqueous alteration of mafic glasses. The glasses may still be important to local-scale thermal infrared studies given the basaltic nature of Mars and the variety of local-scale lithologies detected by various missions. The regional mineralogies derived from the NNLS deconvolution analysis divide into five statistically separable groups, which provide insight into regional trends in mineralogy.  相似文献   
992.
On Caribbean reefs, the excavating sponge Cliona tenuis opportunistically colonized dead skeletons of the elkhorn coral Acropora palmata after its massive die‐off in the 1980s. Further C. tenuis population increase occurred by colonization of other coral species, causing coral tissue death through undermining of live tissue and lateral growth. To follow up on a previous (2001) characterization of the abundance and size structure of C. tenuis at Islas del Rosario (Colombia), these factors were again estimated in 2014, along with its substratum utilization. The fate of sponge individuals colonizing massive coral colonies marked in 2001–2004 was also followed. By 2014 C. tenuis was still disproportionally occupying dead A. palmata branches, but its abundance and density, and the cover of other benthic elements, had not significantly changed over the 13‐year period, suggesting that a stasis has been reached. Cliona tenuis was thus initially favored in the 1980s, but substratum monopolization did not occur. From 2001 to 2014, small individuals increased in number and very large ones decreased, suggesting not only that new recruitment is occurring, but also that larger sponges are shrinking or fragmenting. Marked sponges continued killing corals over the first few years, but over longer times they retreated or died, allowing corals to resume upward growth. However, it could not be ascertained whether the sponge retreat was age‐related or the result of some environmental effect. The apparent preference for recently dead clean coral by larvae of C. tenuis and its current dynamics of recruitment, growth, fragmentation and mortality have stabilized its space occupation at Islas del Rosario.  相似文献   
993.
Marine assemblages on natural hard substrata are generally different from those on artificial habitats. There is, however, the potential for certain ecological processes to operate on both types of structures. On the sides of floating pontoons in Sydney Harbour, there were strong patterns of vertical distribution of sessile epibiotic organisms and molluscan grazers across relatively small spatial scales (in three defined zones, namely splash, shallow and deep). Patterns of vertical distribution of the tubeworms Hydroides spp. were reversed depending on the cover of mussels. A manipulative experiment was done to test if patterns of vertical distribution of Hydroides spp. were due to (1) the functioning of mussels or (2) the structure provided by mussels. Neither the functioning nor structure of mussels accounted for the patterns of distribution of Hydroides spp. Mussels increased recruitment of Hydroides spp., in the shallow and deep zones, and this was not due to increased surface area of the mussel shells. Manipulation of numbers of grazers and covers of sessile epibiota showed that the observed negative relationship between grazers and epibiota was due to grazers reducing recruitment of epibiota and epibiota decreasing survival of grazers. Most importantly, processes that accounted for patterns of distribution of mobile and sessile organisms on artificial floating structures were similar to those repeatedly shown to create such patterns on natural rocky shores.  相似文献   
994.
Cooperative behaviours result in the evolution of cheats: individuals that benefit from the behaviour without sharing the costs required to generate the behaviour. Normally the proportion of cheats is small, as large numbers of cheats will result in the breakdown of the behaviour. Using empirical and simulation‐derived results we demonstrate a cooperative behaviour (aggregation between two species of intertidal snails that provides a benefit by reducing desiccation stress) that shows many characteristics similar to those of a cooperative system with cheats present. In this system, the high rocky shore littorinid Echinolittorina malaccana forages for longer after high water than Echinolittorina radiata, which stops foraging and begins to form aggregations earlier. Nevertheless, E. malaccana, the ‘cheat’ in this system, still occupies an equal proportion of the most beneficial places in aggregations. Computer simulations demonstrate that up to 65% of individual snails can show the behaviour of E. malaccana before the breakdown of this aggregation behaviour begins to occur through aggregations becoming smaller, and hence less effective against desiccation. The high proportion of ‘cheats’ possible in this cooperative behaviour implies that different selective pressures may act on individuals of different species in multi‐species cooperative behaviours to those acting on individuals engaging in single species cooperative behaviours. Social symbiosis appears to be occurring between the species, but it appears that both mutualistic and parasitic symbioses are occurring.  相似文献   
995.
Building on previous studies of volcanoes around the Hellas basin with new studies of imaging (High-Resolution Stereo Camera (HRSC), Thermal Emission Imaging System (THEMIS), Mars Orbiter Camera (MOC), High-Resolution Imaging Science Experiment (HiRISE), Context Imager (CTX)), multispectral (HRSC, Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité (OMEGA)), topographic (Mars Orbiter Laser Altimeter (MOLA)) and gravity data, we define a new Martian volcanic province as the Circum-Hellas Volcanic Province (CHVP). With an area of >2.1 million km2, it contains the six oldest central vent volcanoes on Mars, which formed after the Hellas impact basin, between 4.0 and 3.6 Ga. These volcanoes mark a transition from the flood volcanism that formed Malea Planum ~3.8 Ga, to localized edifice-building eruptions. The CHVP volcanoes have two general morphologies: (1) shield-like edifices (Tyrrhena, Hadriaca, and Amphitrites Paterae), and (2) caldera-like depressions surrounded by ridged plains (Peneus, Malea, and Pityusa Paterae). Positive gravity anomalies are found at Tyrrhena, Hadriaca, and Amphitrites, perhaps indicative of dense magma bodies below the surface. The lack of positive-relief edifices and weak gravity anomalies at Peneus, Malea, and Pityusa suggest a fundamental difference in their formation, styles of eruption, and/or compositions. The northernmost volcanoes, the ~3.7–3.9 Ga Tyrrhena and Hadriaca Paterae, have low slopes, well-channeled flanks, and smooth caldera floors (at tens of meters/pixel scale), indicative of volcanoes formed from poorly consolidated pyroclastic deposits that have been modified by fluvial and aeolian erosion and deposition. The ~3.6 Ga Amphitrites Patera also has a well-channeled flank, but it and the ~3.8 Ga Peneus Patera are dominated by scalloped and pitted terrain, pedestal and ejecta flow craters, and a general ‘softened’ appearance. This morphology is indicative not only of surface materials subjected to periglacial processes involving water ice, but also of a surface composed of easily eroded materials such as ash and dust. The southernmost volcanoes, the ~3.8 Ga Malea and Pityusa Paterae, have no channeled flanks, no scalloped and pitted terrain, and lack the ‘softened’ appearance of their surfaces, but they do contain pedestal and ejecta flow craters and large, smooth, bright plateaus in their central depressions. This morphology is indicative of a surface with not only a high water ice content, but also a more consolidated material that is less susceptible to degradation (relative to the other four volcanoes). We suggest that Malea and Pityusa (and possibly Peneus) Paterae are Martian equivalents to Earth's giant calderas (e.g., Yellowstone, Long Valley) that erupted large volumes of volcanic materials, and that Malea and Pityusa are probably composed of either lava flows or ignimbrites. HRSC and OMEGA spectral data indicate that dark gray to slightly red materials (often represented as blue or black pixels in HRSC color images), found in the patera floors and topographic lows throughout the CHVP, have a basaltic composition. A key issue is whether this dark material represents concentrations of underlying basaltic material eroded by various processes and exposed by aeolian winnowing, or if the material was transported from elsewhere on Mars by regional winds. Understanding the provenance of these dark materials may be the key to understanding the volcanic diversity of the Circum-Hellas Volcanic Province.  相似文献   
996.
The accumulation of floccules into protoplanets is discussed, and it is pointed out that the simplifications which have been introduced into recent numerical models may result in the incorrect conclusion being reached.  相似文献   
997.
Three sequential hurricanes made landfall over the South Florida peninsula in August and September 2004. The storm systems passed north of the Everglades wetlands and northeastern Florida Bay, but indirect storm effects associated with changes in freshwater discharge during an otherwise drought year occurred across the wetland–estuary transition area. To assess the impacts of the 2004 hurricane series on hydrology, nutrients, and microbial communities in the Everglades wetlands to Florida Bay transition area, results are presented in the context of a seasonal cycle without hurricane activity (2003). Tropical activity in 2004 increased rainfall over South Florida and the study area, thereby temporarily relieving drought conditions. Not so much actual rainfall levels at the study site but more so water management practices in preparation of the hurricane threats, which include draining of an extensive freshwater canal system into the coastal ocean to mitigate inland flooding, rapidly reversed hypersalinity in the wetlands-estuary study area. Although annual discharge was comparable in both years, freshwater discharge in 2004 occurred predominantly during the late wet season, whereas discharge was distributed evenly over the 2003 wet season. Total organic carbon (TOC), ammonium ( \operatornameNH + 4 \operatorname{NH} ^{ + }_{4} ), and soluble reactive phosphorus (SRP) concentrations increased during the hurricane series to concentrations two to five times higher than long-term median concentrations in eastern Florida Bay. Spatiotemporal patterns in these resource enrichments suggest that TOC and SRP originated from the Everglades mangrove ecotone, while \operatornameNH + 4 \operatorname{NH} ^{ + }_{4} originated from the bay. Phytoplankton biomass in the bay increased significantly during storm-related freshwater discharge, but declined at the same time in the wetland mangrove ecotone from bloom conditions during the preceding drought. In the bay, these changes were associated with increased nanophytoplankton and decreased picophytoplankton biomass. Heterotrophic bacterial production increased in response to freshwater discharge, whereas bacterial abundance decreased. Hydrochemical and microbial changes were short-lived, and the wetland–bay transition area reverted to more typical oligotrophic conditions within 3 months after the hurricanes. These results suggest that changes in freshwater discharge after drought conditions and during the hurricane series forced the productivity and P-enriched characteristics of the wetland’s mangrove ecotone, although only briefly, to the south into Florida Bay.  相似文献   
998.
Gamma rays at rest frame energies as high as 90 GeV have been reported from gamma-ray bursts (GRBs) by the Fermi Large Area Telescope (LAT). There is considerable hope that a confirmed GRB detection will be possible with the upcoming Cherenkov Telescope Array (CTA), which will have a larger effective area and better low-energy sensitivity than current-generation imaging atmospheric Cherenkov telescopes (IACTs). To estimate the likelihood of such a detection, we have developed a phenomenological model for GRB emission between 1 GeV and 1 TeV that is motivated by the high-energy GRB detections of Fermi-LAT, and allows us to extrapolate the statistics of GRBs seen by lower energy instruments such as the Swift-BAT and BATSE on the Compton Gamma-ray Observatory. We show a number of statistics for detected GRBs, and describe how the detectability of GRBs with CTA could vary based on a number of parameters, such as the typical observation delay between the burst onset and the start of ground observations. We also consider the possibility of using GBM on Fermi as a finder of GRBs for rapid ground follow-up. While the uncertainty of GBM localization is problematic, the small field-of-view for IACTs can potentially be overcome by scanning over the GBM error region. Overall, our results indicate that CTA should be able to detect one GRB every 20–30 months with our baseline instrument model, assuming consistently rapid pursuit of GRB alerts, and provided that spectral breaks below ~100 GeV are not a common feature of the bright GRB population. With a more optimistic instrument model, the detection rate can be as high as 1 to 2 GRBs per year.  相似文献   
999.

Background

Quantifying terrestrial carbon (C) stocks in vineyards represents an important opportunity for estimating C sequestration in perennial cropping systems. Considering 7.2 M ha are dedicated to winegrape production globally, the potential for annual C capture and storage in this crop is of interest to mitigate greenhouse gas emissions. In this study, we used destructive sampling to measure C stocks in the woody biomass of 15-year-old Cabernet Sauvignon vines from a vineyard in California’s northern San Joaquin Valley. We characterize C stocks in terms of allometric variation between biomass fractions of roots, aboveground wood, canes, leaves and fruits, and then test correlations between easy-to-measure variables such as trunk diameter, pruning weights and harvest weight to vine biomass fractions. Carbon stocks at the vineyard block scale were validated from biomass mounds generated during vineyard removal.

Results

Total vine C was estimated at 12.3 Mg C ha?1, of which 8.9 Mg C ha?1 came from perennial vine biomass. Annual biomass was estimated at 1.7 Mg C ha?1 from leaves and canes and 1.7 Mg C ha?1 from fruit. Strong, positive correlations were found between the diameter of the trunk and overall woody C stocks (R2 = 0.85), pruning weights and leaf and fruit C stocks (R2 = 0.93), and between fruit weight and annual C stocks (R2 = 0.96).

Conclusions

Vineyard C partitioning obtained in this study provides detailed C storage estimations in order to understand the spatial and temporal distribution of winegrape C. Allometric equations based on simple and practical biomass and biometric measurements could enable winegrape growers to more easily estimate existing and future C stocks by scaling up from berries and vines to vineyard blocks.
  相似文献   
1000.
Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology and redox processes that occur in these zones, several cores from a region of naturally occurring reducing conditions in a U-contaminated aquifer (Rifle, CO) were examined. Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for U and Fe content, oxidation state, and mineralogy; reduced S phases; and solid-phase organic C content using a suite of analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase U concentrations were higher in the naturally reduced zone, with a high proportion of the U present as U(IV). The sediments were also elevated in reduced S phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and SO4 reduction has occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentrations of solid-phase organic C and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic C concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic C for maintaining reducing conditions and U immobilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号