首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37154篇
  免费   254篇
  国内免费   218篇
测绘学   721篇
大气科学   1705篇
地球物理   7050篇
地质学   14630篇
海洋学   3529篇
天文学   8796篇
综合类   99篇
自然地理   1096篇
  2022年   488篇
  2021年   708篇
  2020年   754篇
  2019年   826篇
  2018年   1696篇
  2017年   1544篇
  2016年   1638篇
  2015年   615篇
  2014年   1414篇
  2013年   2035篇
  2012年   1619篇
  2011年   1898篇
  2010年   1790篇
  2009年   1986篇
  2008年   1765篇
  2007年   1979篇
  2006年   1735篇
  2005年   898篇
  2004年   815篇
  2003年   808篇
  2002年   741篇
  2001年   764篇
  2000年   630篇
  1999年   417篇
  1998年   437篇
  1997年   474篇
  1996年   337篇
  1995年   358篇
  1994年   335篇
  1993年   281篇
  1992年   284篇
  1991年   290篇
  1990年   337篇
  1989年   272篇
  1988年   258篇
  1987年   260篇
  1986年   191篇
  1985年   301篇
  1984年   302篇
  1983年   295篇
  1982年   274篇
  1981年   248篇
  1980年   265篇
  1979年   203篇
  1978年   242篇
  1977年   204篇
  1976年   177篇
  1975年   184篇
  1974年   171篇
  1973年   206篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
161.
A three level classification system, based on the genesis of landforms, was used to map the geomorphology of the Goa state. The first level corresponds to the process that was responsible for landform generation, the second level or the intermediate level was assigned based on the morphography, and the third level corresponds to the individual landforms units identified based on the morphostructure. The mapping was carried out using IRS-P6 LISS-III (23.5 m) satellite image as the primary data source. Ancillary data such as geological map, topographic map, digital elevation model (DEM), field data collected by global positioning system (GPS) and web portals for image visualisation, were also used for the mapping purpose. A new software designed for mapping landforms based on the genesis, was used in this study to create a seamless geomorphology and lineament database of the Goa state in a GIS environment. A total of 58 landforms within six types of genetic classes were mapped in this area. Similarly, structural and geomorphic lineaments were also delineated using the satellite data. The database created has multi-purpose usability such as environmental studies, mining activity assessment, coastal zone management and wasteland development, since the classification system used is focused on processes, not theme specific.  相似文献   
162.
In single-band single-polarized SAR images, intensity and texture are the information source available for unsupervised land cover classification. Every textural feature measure identifies texture patterns by different approaches. For efficient land cover classification, textural measures have to be chosen suitably. Therefore, in this letter, the role of various intensity and textural measures is analyzed for their discriminative ability for unsupervised SAR image classification into various land cover types like water, urban, and vegetation areas. To make the algorithm adaptable, these textural features are fused using principal component analysis (PCA), and principal components are used for classification purposes. To highlight the effectiveness of PCA, the difference between PCA- and non-PCA-based classifications is also analyzed. Analysis of the role of texture measures for unsupervised classification of real-world SAR data with application of PCA is presented in this letter. The analysis of how every individual feature measure contributes for classification process is presented, and then, textural measures for a feature set are chosen according to their role in improving classification accuracy. By analysis, it is observed that the feature set comprising mean, variance, wavelet components, semivariogram, lacunarity, and weighted rank fill ratio provides good classification accuracy of up to 90.4% than by using individual textural measures, and this increased accuracy justifies the complexity involved in the process.  相似文献   
163.
Combined optical and laser altimeter data offer the potential to map and monitor plant communities based on their spectral and structural characteristics. A problem unresolved is, however, that narrowly defined plant communities, i.e. plant communities at a low hierarchical level of classification in the Braun-Blanquet system, often cannot be linked directly to remote sensing data for vegetation mapping. We studied whether and how a floristic dataset can be aggregated into a few major discrete, mappable classes without substantial loss of ecological meaning. Multi-source airborne data (CASI and LiDAR) and floristic field data were collected for a floodplain along the river Waal in the Netherlands. Mapping results based on floristic similarity alone did not achieve highest levels of accuracy. Ordination of floristic data showed that terrain elevation and soil moisture were the main underlying environmental drivers shaping the floodplain vegetation, but grouping of plant communities based on their position in the ordination space is not always obvious. Combined ordination-based grouping with floristic similarity clustering led to syntaxonomically relevant aggregated plant assemblages and yielded highest mapping accuracies.  相似文献   
164.
The existence of uncertainty in classified remotely sensed data necessitates the application of enhanced techniques for identifying and visualizing the various degrees of uncertainty. This paper, therefore, applies the multidimensional graphical data analysis technique of parallel coordinate plots (PCP) to visualize the uncertainty in Landsat Thematic Mapper (TM) data classified by the Maximum Likelihood Classifier (MLC) and Fuzzy C-Means (FCM). The Landsat TM data are from the Yellow River Delta, Shandong Province, China. Image classification with MLC and FCM provides the probability vector and fuzzy membership vector of each pixel. Based on these vectors, the Shannon's entropy (S.E.) of each pixel is calculated. PCPs are then produced for each classification output. The PCP axes denote the posterior probability vector and fuzzy membership vector and two additional axes represent S.E. and the associated degree of uncertainty. The PCPs highlight the distribution of probability values of different land cover types for each pixel, and also reflect the status of pixels with different degrees of uncertainty. Brushing functionality is then added to PCP visualization in order to highlight selected pixels of interest. This not only reduces the visualization uncertainty, but also provides invaluable information on the positional and spectral characteristics of targeted pixels.  相似文献   
165.
Rational Function Model (RFM) is the alternate sensor Model to the rigorous sensor model that allows end user to perform sensor-independent photogrammetric processing. Nowadays, commercial off-the-shelf (COTS) digital photogrammetric work stations have incorporated RFM as a method for image restitution. It is technically applicable to all types of airborne and space borne sensors. In this paper, we describe the derivations of the algorithmic procedure for third order inverse and forward RFM method for 3-D reconstruction. Model accuracy is evaluated for aerial image, TK-350 Russian image and IRS-1C PAN image. The results ensure that properly constructed RFM are accurate enough to be used in place of the original rigorous models. The test results are reported and summarised.  相似文献   
166.
Flexible and cost-effective tools for rapid image acquisition and natural resource mapping are needed by land managers. This paper describes the hardware and software architecture of a low-cost system that can be deployed on a light aircraft for rapid data acquisition. The Hyperspectral and Multispectral Cameras for Airborne Mapping (HAMCAM) was designed and developed in the Geospatial Laboratory for Environmental Dynamics at the University of Idaho as a student-learning tool, and to enhance the existing curriculum currently offered. The system integrates a hyperspectral sensor with four multispectral cameras, an Inertial Navigation System (INS), a Wide Area Augmentation System (WAAS)-capable Global Positioning System (GPS), a data acquisition computer, and custom software for running the sensors in a variety of different modes. The outputs include very high resolution imagery obtained in four adjustable visible and near-infrared bands from the multispectral imager. The hyperspectral sensor acquires 240 spectral bands along 2.7 nm intervals within the 445–900 nm range. The INS provides aircraft pitch, roll and yaw information for rapid geo-registration of the imagery. This paper will discuss the challenges associated with the development of the system and the integration of components and software for implementation of this system for natural resource management applications. In addition, sample imagery acquired by the sensor will be presented.  相似文献   
167.
In this work we have developed a theoretical model that helps the interpretation of the remotely sensed thermal infrared measurements carried out over citrus orchards. A detailed analysis of the different factors which take part in the definition of the effective emissivity and temperature (observation height, viewing angle, type of soil, dimensions and separation between orange trees) is made. The model was validated under vertical observation in a citrus orchard during seven nights. In this situation we have determined that the model performs to an accuracy of about 1%.  相似文献   
168.
We present an alternate mathematical technique than contemporary spherical harmonics to approximate the geopotential based on triangulated spherical spline functions, which are smooth piecewise spherical harmonic polynomials over spherical triangulations. The new method is capable of multi-spatial resolution modeling and could thus enhance spatial resolutions for regional gravity field inversion using data from space gravimetry missions such as CHAMP, GRACE or GOCE. First, we propose to use the minimal energy spherical spline interpolation to find a good approximation of the geopotential at the orbital altitude of the satellite. Then we explain how to solve Laplace’s equation on the Earth’s exterior to compute a spherical spline to approximate the geopotential at the Earth’s surface. We propose a domain decomposition technique, which can compute an approximation of the minimal energy spherical spline interpolation on the orbital altitude and a multiple star technique to compute the spherical spline approximation by the collocation method. We prove that the spherical spline constructed by means of the domain decomposition technique converges to the minimal energy spline interpolation. We also prove that the modeled spline geopotential is continuous from the satellite altitude down to the Earth’s surface. We have implemented the two computational algorithms and applied them in a numerical experiment using simulated CHAMP geopotential observations computed at satellite altitude (450 km) assuming EGM96 (n max = 90) is the truth model. We then validate our approach by comparing the computed geopotential values using the resulting spherical spline model down to the Earth’s surface, with the truth EGM96 values over several study regions. Our numerical evidence demonstrates that the algorithms produce a viable alternative of regional gravity field solution potentially exploiting the full accuracy of data from space gravimetry missions. The major advantage of our method is that it allows us to compute the geopotential over the regions of interest as well as enhancing the spatial resolution commensurable with the characteristics of satellite coverage, which could not be done using a global spherical harmonic representation. The results in this paper are based on the research supported by the National Science Foundation under the grant no. 0327577.  相似文献   
169.
Journal of the Indian Society of Remote Sensing - A stationary, compact, spatially modulated Fourier Transform spectro-radiometer based on triangular, common path Sagnac interferometer has been...  相似文献   
170.
The paper discusses the land damage assessment and change detection analysis with reference to a mineral bearing zone in Manjhi, Manuni and Churan valleys. The area is located in environmentally sensitive and fragile region of Himalaya and constitutes of nearly 400 small-scale mines of slate, which were operative since last one hundred years and are stopped by court of law since 1995 on account of environment deterioration. The status of land degradation has been studied using IRS-1B satellite data of 1988,1992 and 1995. The geo-coded data on 1:50,000 scale has been interpreted and an increase in land degradation status was noticed. Finally, the management strategy for arresting the further land damage in a broader perspective is suggested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号