首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   21篇
  国内免费   5篇
测绘学   7篇
大气科学   32篇
地球物理   71篇
地质学   103篇
海洋学   11篇
天文学   82篇
综合类   3篇
自然地理   6篇
  2023年   2篇
  2021年   3篇
  2020年   4篇
  2019年   11篇
  2018年   7篇
  2017年   10篇
  2016年   11篇
  2015年   7篇
  2014年   15篇
  2013年   15篇
  2012年   13篇
  2011年   20篇
  2010年   24篇
  2009年   15篇
  2008年   13篇
  2007年   12篇
  2006年   9篇
  2005年   10篇
  2004年   7篇
  2003年   10篇
  2002年   10篇
  2001年   8篇
  2000年   3篇
  1999年   8篇
  1998年   4篇
  1997年   7篇
  1996年   4篇
  1995年   2篇
  1994年   7篇
  1993年   4篇
  1992年   3篇
  1990年   4篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1968年   2篇
  1967年   1篇
  1965年   1篇
排序方式: 共有315条查询结果,搜索用时 203 毫秒
91.
The recent increase in the rate of the Greenland ice sheet melting has raised with urgency the question of the impact of such a melting on the climate. As former model projections, based on a coarse representation of the melting, show very different sensitivity to this melting, it seems necessary to consider a multi-model ensemble to tackle this question. Here we use five coupled climate models and one ocean-only model to evaluate the impact of 0.1 Sv (1 Sv = 106 m3/s) of freshwater equally distributed around the coast of Greenland during the historical era 1965–2004. The ocean-only model helps to discriminate between oceanic and coupled responses. In this idealized framework, we find similar fingerprints in the fourth decade of hosing among the models, with a general weakening of the Atlantic Meridional Overturning Circulation (AMOC). Initially, the additional freshwater spreads along the main currents of the subpolar gyre. Part of the anomaly crosses the Atlantic eastward and enters into the Canary Current constituting a freshwater leakage tapping the subpolar gyre system. As a consequence, we show that the AMOC weakening is smaller if the leakage is larger. We argue that the magnitude of the freshwater leakage is related to the asymmetry between the subpolar-subtropical gyres in the control simulations, which may ultimately be a primary cause for the diversity of AMOC responses to the hosing in the multi-model ensemble. Another important fingerprint concerns a warming in the Nordic Seas in response to the re-emergence of Atlantic subsurface waters capped by the freshwater in the subpolar gyre. This subsurface heat anomaly reaches the Arctic where it emerges and induces a positive upper ocean salinity anomaly by introducing more Atlantic waters. We found similar climatic impacts in all the coupled ocean–atmosphere models with an atmospheric cooling of the North Atlantic except in the region around the Nordic Seas and a slight warming south of the equator in the Atlantic. This meridional gradient of temperature is associated with a southward shift of the tropical rains. The free surface models also show similar sea-level fingerprints notably with a comma-shape of high sea-level rise following the Canary Current.  相似文献   
92.
93.
Abstract— The Machinga, southern Malawi, Africa, L6 chondrite (observed fall, 22 January 1981) contains accessory phases of metal, troilite, chromite, and native Cu (which is associated with limonite and found in zones of aqueous alteration). Rare accessory phases are apatite and pentlandite, which are uncommon in L6 chondrites. Major mineral constituents (olivine, orthopyroxene, and plagioclase) indicate shock effects at a level of about 15–20 GPa shock pressure. The meteorite is thus classified to be of L6d type. Melt pockets of widely variable composition are abundant.  相似文献   
94.
Abstract— The genesis of the 1.13-km-diameter Pretoria Saltpan crater has long been the focus of a controversy. Its origin has been explained by either meteorite impact or “cryptoexplosive” volcanic activity, but it was recently confirmed, through detailed petrographic and chemical analysis of a breccia layer forming part of the crater fill, that the crater was formed by impact. As the limited previous geophysical work failed to support an impact origin, a more detailed gravity and magnetic study was conducted. A possible 400-m-diameter circular crater located 3 km to the southwest of the main crater was also investigated with geophysical methods, including resistivity, seismics and ground-probing radar. The gravity signature of the main crater is compatible with that of a simple impact crater and the magnetic signature (no magnetic anomaly could be detected) rules out the possibility of a central magnetic volcanic body below the crater-fill sediments. The results for the possible twin or satellite crater are inconclusive. As it is the only such feature in the entire region, it should not be overlooked. A drilling program may reveal interesting results.  相似文献   
95.
The paper presents the first study of heavy-mineral sand beaches from the Mediterranean coast of Annaba/Algeria. The studied beaches run along the basement outcrops of the Edough massif, which are mainly composed by micaschists, tourmaline-rich quartzo-feldspathic veins, gneisses, skarns and marbles. Sand samples were taken from three localities (Ain Achir, Plage-Militaire and El Nasr). The heavy-mineral fraction comprises between 74 and 91 vol%. The garnets of the beaches are almandine rich and tourmalines vary with respect to their location from schorl to dravite. Tourmaline at Ain Achir and the Plage-Militaire is schorlits, while at El Nasr beach dravite is ubiquitous. The World Shale Average normalised REE of the sands and the basement outcrops reveal: (i) Ain Achir beach: REE pattern of sand and the coastal rocks from the studied beaches reflects a multiple sources; (ii) Plage-Militaire: the sand and the coastal outcrops show similar LREE and a strong enrichment in HREE, suggesting the presence HREE-rich phases found as inclusions in staurolite; (iii) El Nasr: two types of sand patterns are found: one with flat REE pattern similar to the proximal rocks and other one enriched in HREE suggesting a mixed source.  相似文献   
96.
The Laguna Lagunillas basin in the arid Andes of northern Chile exhibits a shallow aquifer and is exposed to extreme air temperature variations from 20 to ?25 °C. Between 1991 and 2012, groundwater levels in the Pampa Lagunillas aquifer fell from near-surface to ~15 m below ground level (bgl) due to severe overexploitation. In the same period, local mean monthly minimum temperatures started a declining trend, dropping by 3–8 °C relative to a nearby reference station. Meanwhile, mean monthly maximum summer temperatures shifted abruptly upwards by 2.7 °C on average in around 1996. The observed air temperature downturns and upturns are in accordance with detected anomalies in land-surface temperature imagery. Two major factors may be causing the local climate change. One is related to a water-table decline below the evaporative energy potential extinction depth of ~2 m bgl, which causes an up-heating of the bare soil surface and, in turn, influences the lower atmosphere. At the same time, the removal of near-surface groundwater reduces the thermal conductivity of the upper sedimentary layer, which consequently diminishes the heat exchange between the aquifer (constant heat source of ~10 °C) and the lower atmosphere during nights, leading to a severe dropping of minimum air temperatures. The observed critical water-level drawdown was 2–3 m bgl. Future and existing water-production projects in arid high Andean basins with shallow groundwater should avoid a decline of near-surface groundwater below 2 m bgl and take groundwater-climate interactions into account when identifying and monitoring potential environmental impacts.  相似文献   
97.
98.
Natural catastrophes could damage island biodiversity and ecosystems, and their effects could become devastating if combined with human disturbances. In this study, we determined the effects of the tsunami occurred in Robinson Crusoe Island (Chile) on 27 February 2010 on an endangered soil–plant system. Using data of endemic Cabbage Trees (Dendroseris litoralis Skottsb.) and soil attributes taken before and after the 2010 event, we developed thematic maps to assess the changes in population size and soil substrate of Cabbage Trees caused by the tsunami. We determined that from 153 pre-tsunami (2009) standing Cabbage Trees, only 66 (43 %) survived in 2011, mostly in elevations above 25 m a.s.l. Before the tsunami, 86 (56 %) of Cabbage Trees were established in humus-rich soil sites whereas after the tsunami, this number declined to 53 (35 %). These results represent the first report of a severe population decline after a tsunami and indicate that tsunamis are an important source of species extinction in small oceanic islands not only by reducing the population size but also by reducing the quality of sites for plant growth.  相似文献   
99.
100.
Abstract– The processes leading to formation of sometimes massive occurrences of pseudotachylitic breccia (PTB) in impact structures have been strongly debated for decades. Variably an origin of these pseudotachylite (friction melt)‐like breccias by (1) shearing (friction melting); (2) so‐called shock compression melting (with or without a shear component) immediately after shock propagation through the target; (3) decompression melting related to rapid uplift of crustal material due to central uplift formation; (4) combinations of these processes; or (5) intrusion of allochthonous impact melt from a coherent melt body has been advocated. Our investigations of these enigmatic breccias involve detailed multidisciplinary analysis of millimeter‐ to meter‐sized occurrences from the type location, the Vredefort Dome. This complex Archean to early Proterozoic terrane constitutes the central uplift of the originally >250 km diameter Vredefort impact structure in South Africa. Previously, results of microstructural and microchemical investigations have indicated that formation of very small veinlets involved local melting, likely during the early shock compression phase. However, for larger veins and networks it was so far not possible to isolate a specific melt‐forming mechanism. Macroscopic to microscopic evidence for friction melting is very limited, and so far chemical results have not directly supported PTB generation by intrusion of impact melt. On the other hand, evidence for filling of dilational sites with melt is abundant. Herein, we present a new approach to the mysterium of PTB formation based on volumetric melt breccia calculations. The foundation for this is the detailed analysis of a 1.5 × 3 × 0.04 m polished granite slab from a dimension‐stone quarry in the core of the Vredefort Dome. This slab contains a 37.5 dm3 breccia zone. The pure melt volume in 0.1 m3 PTB‐bearing granitic target rock outside of the several‐decimeter‐wide breccia zone in the granite slab was estimated at 5.2 dm3. This amount can be divided into 4.6 dm3 melt (88%), for which we have evidenced a limited material transport (at maximum, ≈20 cm) and 0.6 dm3 melt (12%) with, at most, grain‐scale material transport, which we consider in situ formed shock melt. The breccia zone itself contains about 10 dm3 of matrix (melt). Assuming melt exchange over 20 cm at the slab surface, between breccia zone and surrounding melt‐bearing host rock volume, the outer melt volume is calculated to contain the same amount of melt as contained by the massive breccia zone. Meso‐ and microscopic observations indicate melt transport is more prominent from larger into smaller melt occurrences. Thus, melt of the breccia zone could have provided the melt fill for all the small‐scale PTB veins in the surrounding target rock. Extrapolating this melt capacity calculation for 1 m3 PTB‐bearing host rock shows that a host rock volume of this dimension is able to take up some 52 dm3 melt. Scaling up 1000‐fold to the outcrop scale reveals that exchange between a host rock volume of 2 m radius around a 37 m3 breccia zone could involve some 10 m3 melt. These results demonstrate that large melt volumes (i.e., large breccia zones) can be derived, in principle, from local reservoirs. However, strong decompression would have to apply in order to exchange these considerable melt volumes, which would only be realistic during the decompression phase of impact cratering upon central uplift formation, or locally where compressive regimes acted during the subsequent down‐ and outward collapse of the central uplift.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号