首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
大气科学   12篇
地球物理   14篇
地质学   40篇
海洋学   5篇
天文学   12篇
自然地理   8篇
  2022年   1篇
  2019年   2篇
  2018年   4篇
  2017年   6篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   12篇
  2012年   1篇
  2011年   5篇
  2010年   7篇
  2009年   6篇
  2008年   6篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1997年   5篇
  1996年   3篇
  1993年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1967年   1篇
  1963年   1篇
排序方式: 共有92条查询结果,搜索用时 0 毫秒
91.
We present a new numerical approach for simulating geomorphic and stratigraphic processes that combines open‐channel flow with non‐uniform sediment transport law and semi‐empirical diffusive mass wasting. It is designed to facilitate modelling of surface processes across multiple space‐ and time‐scales, and under a variety of environmental and tectonic conditions. The physics of open‐channel flow is primarily based on an adapted Lagrangian formulation of shallow‐water equations. The interaction between flow and surface geology is performed by a non‐uniform total‐load sediment transport law. Additional hillslope processes are simulated using a semi‐empirical method based on a diffusion approach. In the implementation, the resolution of flow dynamics is made on a triangulated grid automatically mapped and adaptively remeshed over a regular orthogonal stratigraphic mesh. These new methods reduce computational time while preserving stability and accuracy of the physical solutions. In order to illustrate the potential of this method for landscape and sedimentary system modelling, we present a set of three generic experiments focusing on assessing the influence of contrasting erodibilities on the evolution of an active bedrock landscape. The modelled ridges morphometrics satisfy established relationships for drainage network geometry and slope distribution, and provide quantitative information on the relative impact of hillslope and channel processes, sediment discharge and alluviation. Our results suggest that contrasting erodibility can stimulate autogenic changes in erosion rate and influence the landscape morphology and preservation. This approach offers new opportunities to investigate joint landscape and sedimentary systems response to external perturbations. The possibility to define and track a large number of materials makes the implementation highly suited to model source‐to‐sink problems where material dispersion is the key question that needs to be addressed, such as natural resources exploration and basin analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
92.
Marine shelf strata of the Quinault Formation reflect the influences of storm–flood processes and convergent margin tectonism on sedimentation and palaeocommunity distributions in an active forearc basin of Early Pliocene age, western Washington, USA. The sedimentologic, ichnologic and invertebrate megafaunal character of coastal sea cliff exposures in the Pratt Cliff–Duck Creek area, Quinault Indian Nation, reveal five different sedimentary facies – scoured, Rosselia, bioturbated, mixed and Acharax. These facies document the shifting interplay and intensities among storms, waves and river‐flood plumes during transgression in inner to mid‐shelf settings. Storm sedimentation on the inner shelf is recorded north of Pratt Cliff by amalgamated, proximal tempestites of the scoured facies, which grade up‐section to thick deposits of hummocky cross‐stratified sandstone, indicative of strong wave influences. These hummocky beds alternate, in metre‐scale packages, with banded mudstone and siltstone that have distinctive sedimentologic and ichnofaunal characteristics (Rosselia facies). In particular the mudstone and siltstone occur as 1–15 cm‐thick, rhythmic, parallel beds that are laterally continuous, internally homogeneous to faintly laminated, and thus similar in nature to fine‐grained, oceanic flood deposits reported from shelf settings offshore the modern Eel River, northern California. The Quinault flood deposits are dominated by the ubiquitous trace fossil Rosselia socialis, comprising vertical, mud‐packed, flaring burrows with a sand‐filled central shaft which has been inferred as the feeding‐dwelling structure of a vermiform invertebrate adapted to high sedimentation rates in inner‐shelf settings. Fairweather conditions in between the higher energy periods of storms, waves and floods are recorded north of Pratt Cliff by the mixed facies, which is interpreted as representing the sand and mud zone of the inner‐ to mid‐shelf transition. Quieter, deeper, mid‐shelf, fairweather settings are typified by the bioturbated facies south of Pratt Cliff, where lower sedimentation rates and lower physical energies produced extensively bioturbated deposits of sandy siltstone punctuated, in places, by isolated sandy beds of distal tempestites. Quinault strata also chronicle stratigraphic signatures of subduction of the Juan de Fuca plate beneath western Washington during the Pliocene. For example, the imprint of geochemically unusual authigenic carbonates and a chemosynthetic palaeocommunity (Acharax facies) have been interpreted as a methane seep on the Quinault seafloor. Furthermore, a mobile rockground epifauna of pholadid bivalves became established on abundant, dark mudstone cobbles and pebbles sourced from the Hoh Assemblage, a Miocene accretionary prism that was actively deforming as well as interacting with Quinault forearc sediments during the Pliocene. Hoh mudstone clasts were supplied to the Quinault shelf via seafloor‐piercing diapirs and eroding mélange shear zones, exposures of which today occur in fault contact with Quinault strata along the coast from Taholah to the Raft River.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号