首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   8篇
  国内免费   1篇
测绘学   3篇
大气科学   13篇
地球物理   29篇
地质学   21篇
海洋学   28篇
天文学   23篇
自然地理   7篇
  2021年   1篇
  2019年   2篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   8篇
  2013年   1篇
  2012年   4篇
  2011年   10篇
  2010年   4篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1972年   2篇
  1971年   1篇
  1956年   1篇
排序方式: 共有124条查询结果,搜索用时 93 毫秒
91.
Geotechnical and Geological Engineering - This paper investigates the settlement in a pavement due to soil liquefaction. Four 1-g shaking table tests were performed on saturated sand bed-pavement...  相似文献   
92.
Natural Hazards - The recognition of landslides and making their inventory map are considered to be urgent tasks not only for damage estimation but also for planning rescue and restoration...  相似文献   
93.
The temperature rise caused by frictional heating during seismic slip is able to indicate dynamic frictional properties of the seismic fault,which provides an approach to understand the dynamic process and energy budget of an earthquake.The residual indicators of frictional heating within the fault zone also can be taken as an evidence for seismic events.The vitrinite reflectance is a commonly-used geothermometer in the coal,oil and gas industries.It also has some potential applications in the studies of fault rock and fault mechanics.We studied vitrinite reflectance (VR) of fault rocks collected from surface outcrops of the Wenchuan earthquake fault zone in this paper.The measured data reveal that the VR of fault rocks are affected by fault motion,and there is a trend that the VR increases towards the fault core,which indicates the effects of frictional heating.The VR of fault rocks from the Bajiaomiao outcrop is much higher than those from the Shenxigou outcrop,which probably suggests the difference in fault activity at the two outcrops.Our study also suggests that systematic measurement of VR across the fault zone is helpful in identifying slip zones and determining their widths.From the VR measurement on an oriented specimen containing the slip surface of the Wenchuan earthquake from the Shenxigou outcrop,we observed anomalous high VR values in two black-colored slip zones of about 2mm in width near the slip surface.The numerical calculation shows that the maximum temperature rise on the fault plane near Shenxigou was probably less than 162℃ during the Wenchuan earthquake,which means the dynamic fault strength was quite low.These estimations are roughly in accord with the results from the high-velocity frictional experiments.  相似文献   
94.
Chemical reactions and volatile supply through hypervelocity impacts may have played a key role for the origin and evolution of both planetary and satellite atmospheres. In this study, we evaluate the role of impact-induced N2 production from reduced nitrogen-bearing solids proposed to be contained in Titan’s crust, ammonium sulfate ((NH4)2SO4), for the replenishment of N2 to the atmosphere in Titan’s history. To investigate the conversion of (NH4)2SO4 into N2 by hypervelocity impacts, we measured gases released from (NH4)2SO4 that was exposed to hypervelocity impacts created by a laser gun. The sensitivity and accuracy of the measurements were enhanced by using an isotope labeling technique for the target. We obtained the efficiency of N2 production from (NH4)2SO4 as a function of peak shock pressure ranging from ∼8 to ∼45 GPa. Our results indicate that the initial and complete shock pressures for N2 degassing from (NH4)2SO4 are ∼10 and ∼25 GPa, respectively. These results suggest that cometary impacts on Titan (i.e., impact velocity vi > ∼8 km/s) produce N2 efficiently; whereas satellitesimal impacts during the accretion (i.e., vi < 4 km/s) produce N2 only inefficiently. Even when using the proposed small amount of (NH4)2SO4 content in the crust (∼4 wt.%) (Fortes, A.D. et al., 2007. Icarus 188, 139-153), the total amount of N2 provided through cometary impacts over 4.5 Ga reaches ∼2-6 times the present atmospheric N2 (i.e., ∼7 × 1020-2 × 1021 [mol]) based on the measured production efficiency and results of a hydrodynamic simulation of cometary impacts onto Titan. This implies that cometary impacts onto Titan’s crust have the potential to account for a large part of the present N2 through the atmospheric replenishment after the accretion.  相似文献   
95.
Anthropogenic global warming will lead to changes in the global hydrological cycle. The uncertainty in precipitation sensitivity per 1 K of global warming across coupled atmosphere-ocean general circulation models (AOGCMs) has been actively examined. On the other hand, the uncertainty in precipitation sensitivity in different emission scenarios of greenhouse gases (GHGs) and aerosols has received little attention. Here we show a robust emission-scenario dependency (ESD); smaller global precipitation sensitivities occur in higher GHG and aerosol emission scenarios. Although previous studies have applied this ESD to the multi-AOGCM mean, our surprising finding is that current AOGCMs all have the common ESD in the same direction. Different aerosol emissions lead to this ESD. The implications of the ESD of precipitation sensitivity extend far beyond climate analyses. As we show, the ESD potentially propagates into considerable biases in impact assessments of the hydrological cycle via a widely used technique, so-called pattern scaling. Since pattern scaling is essential to conducting parallel analyses across climate, impact, adaptation and mitigation scenarios in the next report from the Intergovernmental Panel on Climate Change, more attention should be paid to the ESD of precipitation sensitivity.  相似文献   
96.
Onshore tsunami deposits resulting from the 1993 Southwest Hokkaido and 1983 Japan Sea earthquakes were described to evaluate the feasibility of tsunami deposits for inferring paleoseismic events along submarine faults. Tsunami deposits were divided into three types, based on their composition and aerial distribution: (A) deposits consisting only of floating materials, (B) locally distributed siliclastic deposits, and (C) widespread siliclastic deposits. The most widely distributed tsunami deposits consist of the first two types. Type C deposits are mostly limited to areas where the higher tsunami runup was observed. The scale of tsunami represented by vertical tsunami runup is an important factor controlling the volume of tsunami deposits. The thickest deposits, about 10 cm, occur behind coastal dunes. To produce thick siliclastic tsunami deposits, a suitable source area, such as sand bar or dune, must be available in addition to sufficient vertical tsunami runup. Estimation of the amounts of erosion and deposition indicates that tsunami deposits were derived from both onshore and shoreface regions. The composition and grain size of the tsunami deposits strongly reflect the nature of the sedimentary materials of their source area. Sedimentary structures of the tsunami deposits suggest both low and high flow régimes. Consequently, it seems very difficult to identify tsunami deposits based only on grain size distribution or sedimentary structure of a single site in ancient successions.  相似文献   
97.
Further observational evidence of normal mode Rossby waves with higher meridional mode numbers is presented with the aid of global data from the troposphere to the stratosphere over the period November 1979 through April 1986.It is shown, without using ana priori assumption of meridional structure, that the third antisymmetric modes of zonal wavenumbers 1 and 2,i.e., (1,4) and (2,4) modes, substantially exist in the real atmosphere. These modes are, however, easily influenced by the nonuniform background field even in the equinoctial season; amplitude submaxima near the equator are apt to be dubious in the upper stratosphere so that the prototype meridional structure becomes obscure. The period of the (1,4) mode often falls into that of the (1,3) mode, about 16 days. Hence, these two modes cannot be classified simply by their periods, but the separation is made by their meridional structure.An appearance calendar of various modes is also presented for the analysis period. It is found that each mode appears irregularly throughout the year and that the year-to-year variation is fairly large.  相似文献   
98.
We report the result of our near-infrared observations ( JHK s) for type II Cepheids (including possible RV Tau stars) in galactic globular clusters. We detected variations of 46 variables in 26 clusters (10 new discoveries in seven clusters) and present their light curves. Their periods range from 1.2 d to over 80 d. They show a well-defined period–luminosity relation at each wavelength. Two type II Cepheids in NGC 6441 also obey the relation if we assume the horizontal branch stars in NGC 6441 are as bright as those in metal-poor globular clusters in spite of the high metallicity of the cluster. This result supports the high luminosity which has been suggested for the RR Lyr variables in this cluster. The period–luminosity relation can be reproduced using the pulsation equation     assuming that all the stars have the same mass. Cluster RR Lyr variables were found to lie on an extrapolation of the period–luminosity relation. These results provide important constraints on the parameters of the variable stars.
Using Two Micron All-Sky Survey (2MASS) data, we show that the type II Cepheids in the Large Magellanic Cloud (LMC) fit our period–luminosity relation within the expected scatter at the shorter periods. However, at long periods (   P > 40  d, i.e. in the RV Tau star range) the LMC field variables are brighter by about one magnitude than those of similar periods in galactic globular clusters. The long-period cluster stars also differ from both these LMC stars and galactic field RV Tau stars in a colour–colour diagram. The reasons for these differences are discussed.  相似文献   
99.
Abstract— Fischer‐Tropsch catalysis, by which CO and H2 are converted to CH4 on the surface of transition metals, has been considered to be one of the most important chemical reactions in many planetary processes, such as the formation of the solar and circumplanetary nebulae, the expansion of vapor clouds induced by cometary impacts, and the atmospheric re‐entry of vapor condensate due to asteroidal impacts. However, few quantitative experimental studies have been conducted for the catalytic reaction under conditions relevant to these planetary processes. In this study, we conduct Fischer‐Tropsch catalytic experiments at low pressures (1.3 times 10?4 bar ≤ P ≤ 5.3 times 10?1 bar) over a wide range of H2/CO ratios (0.25–1000) using pure iron, pure nickel, and iron‐nickel alloys. We analyze what gas species are produced and measure the CH4 formation rate. Our results indicate that the CH4 formation rate for iron catalysts strongly depends on both pressure and the H2/CO ratio, and that nickel is a more efficient catalyst at lower pressures and lower H2/CO ratios. This difference in catalytic properties between iron and nickel may come from the reaction steps concerning disproportionation of CO, hydrogenation of surface carbon, and the poisoning of the catalyst. These results suggest that nickel is important in the atmospheric re‐entry of impact condensate, while iron is efficient in circumplanetary subnebulae. Our results also indicate that previous numerical models of iron catalysis based on experimental data at 1 bar considerably overestimate CH4 formation efficiency at lower pressures, such as the solar nebula and the atmospheric re‐entry of impact condensate.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号