首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66583篇
  免费   1449篇
  国内免费   495篇
测绘学   1675篇
大气科学   5334篇
地球物理   13860篇
地质学   21681篇
海洋学   5763篇
天文学   15321篇
综合类   135篇
自然地理   4758篇
  2020年   484篇
  2019年   512篇
  2018年   965篇
  2017年   942篇
  2016年   1386篇
  2015年   1036篇
  2014年   1430篇
  2013年   3291篇
  2012年   1525篇
  2011年   2312篇
  2010年   1967篇
  2009年   2967篇
  2008年   2705篇
  2007年   2431篇
  2006年   2501篇
  2005年   2152篇
  2004年   2260篇
  2003年   2088篇
  2002年   1978篇
  2001年   1786篇
  2000年   1762篇
  1999年   1511篇
  1998年   1501篇
  1997年   1491篇
  1996年   1278篇
  1995年   1215篇
  1994年   1097篇
  1993年   997篇
  1992年   944篇
  1991年   800篇
  1990年   1011篇
  1989年   852篇
  1988年   758篇
  1987年   928篇
  1986年   817篇
  1985年   1022篇
  1984年   1186篇
  1983年   1130篇
  1982年   1021篇
  1981年   981篇
  1980年   837篇
  1979年   822篇
  1978年   875篇
  1977年   790篇
  1976年   753篇
  1975年   701篇
  1974年   704篇
  1973年   712篇
  1972年   443篇
  1971年   389篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
551.
Structural, petrographic and geochronologic studies of the Kampa Dome provide insights into the tectonothermal evolution of orogenic crust exposed in the North Himalayan gneiss domes of southern Tibet. U–Pb ion microprobe dating of zircons from granite gneiss exposed at the deepest levels within the dome yields concordia 206Pb/238U age populations of 506 ± 3 Ma and 527 ± 6 Ma, with no evidence of new zircon growth during Himalayan orogenesis. However, the granite contains penetrative deformation fabrics that are also preserved in the overlying Paleozoic strata, implying that the Kampa granite is a Cambrian pluton that was strongly deformed and metamorphosed during Himalayan orogenesis. Zircons from deformed leucogranite sills that cross-cut Paleozoic metasedimentary rocks yield concordant Cambrian ages from oscillatory zoned cores and discordant ages ranging from ca. 491–32 Ma in metamict grains. Since these leucogranites clearly post-date the metasedimentary rocks they intrude, the zircons are interpreted as xenocrysts that are probably derived from the Kampa granite. The Kampa Dome formed via a series of progressive orogenic events including regional ~ N–S contraction and related crustal thickening (D1), predominately top-to-N ductile shearing and crustal extension (D2), top-to-N brittle–ductile faulting and related folding on the north limb of the dome, localized top-to-S faulting on the southern limb of the dome, and crustal doming (D3), and continued N–S contraction, E–W extension and doming (D4). Structural and geochronologic variability amongst adjacent North Himalayan gneiss domes may reflect changes in the magnitude of crustal exhumation along the North Himalayan antiform, possibly relating to differences in the mid-crustal geometry of the exhuming fault systems.  相似文献   
552.
The Scandinavian Caledonides have been viewed as resulting from either a single Silurian (i.e. Scandian) event or from polycyclic orogenies involving several collisions on the margin of Baltica. Early studies of the Kalak Nappe Complex (KNC) in Finnmark, Arctic Norway, led to the hypothesis of an Early Cambrian-Early Ordovician (520-480 Ma) Finnmarkian Orogeny, though the nature of this tectonic event remains enigmatic. In this contribution we have employed in situ UV laser ablation Ar-Ar dating of fine-grained phyllite and schist from the eastern Caledonides of Arctic Norway to investigate the presence of pre-Scandian tectonometamorphic events. U-Th-Pb detrital zircon and whole rock Sm-Nd analyses have been used to test the regional stratigraphic correlations of these metasedimentary rocks. These results indicate that the Berlevåg Formation within the Tanafjord Nappe, previously assumed to be part of the KNC, was deposited after 1872 Ma and prior to a low temperature hydrothermal event at 555 ± 15 Ma. It has a likely provenance on the Baltica continent, lacks any Grenville-Sveconorwegian detrital zircons, and thus cannot be part of the KNC which contains abundant detritus in this age range. Instead the Berlevåg Formation is interpreted as part of the Laksefjord Nappe Complex, which structurally underlies the KNC. Laser-ablation argon-argon dating also shows that late Caledonian (i.e. Scandian) tectonometamorphism affected both the KNC and its immediate footwall at c. 425 ± 15 Ma. This is corroborated by a step-heating argon-argon muscovite age of 424 ± 3 Ma which is interpreted as dating cooling. However, within two samples from the KNC, an earlier (Middle-Late Cambrian) metamorphic event is also recorded. A biotite-grade schist yielded an Ar-Ar inverse isochron age of 506 ± 17 Ma from whole rock surfaces, in which the mineral domains are too fine-grained to date individually. An early generation of muscovite from a coarser-grained amphibolite-facies sample yielded an inverse isochron of 498 ± 13 Ma. Both isochron ages have atmospheric argon intercept values. Previous studies have documented similar Cambrian ages in the Caledonian nappes below the KNC. These results suggest correlative tectonometamorphic events in the eastern KNC and its footwall at c. 500 Ma. This Cambrian event may reflect the arrival of the Kalak Nappe Complex as a previously constructed exotic mobile belt onto the margin of Baltica. Combined with recent studies from the western Kalak Nappe Complex, the results do not support the traditional constraint on the Finnmarkian Orogeny sensu stricto. However they vindicate classic tectonic models involving a Cambrian accretion event.  相似文献   
553.
Carbon biogeochemistry of the Betsiboka estuary (north-western Madagascar)   总被引:1,自引:0,他引:1  
Madagascar’s largest estuary (Betsiboka) was sampled along the salinity gradient during the dry season to document the distribution and sources of particulate and dissolved organic carbon (POC, DOC) as well as dissolved inorganic carbon (DIC). The Betsiboka was characterized by a relatively high suspended matter load, and in line with this, low DOC/POC ratios (0.4–2.5). The partial pressure of CO2 (pCO2) was generally above atmospheric equilibrium (270–1530 ppm), but relatively low in comparison to other tropical and subtropical estuaries, resulting in low average CO2 emission to the atmosphere (9.1 ± 14.2 mmol m−2 d−1). Despite the fact that C4 vegetation is reported to cover >80% of the catchment area, stable isotope data on DOC and POC suggest that C4 derived material comprises only 30% of both pools in the freshwater zone, increasing to 60–70% and 50–60%, respectively, in the oligohaline zone due to additional lateral inputs. Sediments from intertidal mangroves in the estuary showed low organic carbon concentrations (<1%) and δ13C values (average −19.8‰) consistent with important inputs of riverine imported C4 material. This contribution was reflected in δ13C signatures of bacterial phospholipid derived fatty acids (i + a15:0), suggesting the potential importance of terrestrial organic matter sources for mineralization and secondary production in coastal ecosystems.  相似文献   
554.
In 2001 a partial skeleton of an Iguanodon was discovered in the Upper Weald Clay (Barremian, Early Cretaceous) at Smokejacks Brickworks near Ockley, Surrey, UK. When the dinosaur was excavated, a detailed stratigraphic section was logged and 25 samples taken for palynological and micropalaeontological (ostracod and megaspore) analysis, including a detailed sample set of the dinosaur bed itself. Qualitative and quantitative analysis of the palynoflora revealed rich and well-preserved non-marine assemblages of pollen and spores, including early angiosperms, and freshwater green algae. Four types of angiosperm pollen are described and assigned to the genus Retimonocolpites Pierce, 1961, but left in open nomenclature. Some marine elements such as dinoflagellate cysts are identified as the result of reworking of Middle and Upper Jurassic sediments. The pollen/spore assemblages depict a vegetational change from principally gymnosperm-dominated assemblages at the base to principally pteridophyte-dominated assemblages at the top of the section. The dinosaur bed shows a pteridophyte-dominated assemblage, with a significantly high amount of the freshwater green alga Scenedesmus novilunaris He Cheng-quan et al., 1992. Samples close to the dinosaur bed yielded the first useful ostracod finds from Smokejacks Brickworks: well-preserved assemblages containing Cypridea clavata (Anderson, 1939), Damonella cf. pygmaea (Anderson, 1941), Stenestroemia cf. cressida Anderson, 1971 and Stenestroemia sp. A, and fragments and damaged valves of a thin-shelled ostracod, possibly belonging to Mantelliana Anderson, 1966. Those identified as Cypridea clavata show a wide range of morphological variety and in opposition to Anderson's (1967, 1985) taxonomic scheme, which would assign them to up to five different taxa, they are considered to be intraspecific variants of a single species. The possibilities and limitations of age determination of the Wealden sediments using palynomorphs and ostracods are discussed; distinct forms of early angiosperm pollen, together with the ostracod fauna, are consistent with an early Barremian age. Pollen and spores are discussed in terms of their parent plants and the reconstruction of vegetation and palaeoclimate. Palynology and ostracods give evidence for temporary freshwater conditions at the time when the Iguanodon died and the carcase was buried.  相似文献   
555.
Mining of Cenozoic alluvial deposits at Copeton and Bingara (Eastern Australia) has produced two million macrodiamonds (0.25 ct median size). Raman spectroscopy is used to identify included minerals within uncut Copeton diamonds, with sealed chamber remnant pressures of 31.7 to 35.6 kbar for coesite, 13.6 and 22.7 kbar for clinopyroxene, and 7.6 kbar for grossular garnet. Assuming elastic behaviour, these values generate inclusion entrapment PT loci which intersect, restricting diamond formation conditions: from 250 °C, 43 kbar to 800 °C, 52 kbar. Larger than error (± 100 °C and ± 4 kbar), this range shows a systematic variation in inclusion composition with diamond zoning and N properties. Published research shows 1) Copeton and Bingara diamonds are unique, and 2) modern alluvium in the Bingara district carries mantle-formed garnet, captured by post-tectonic alkali basalt from an extensive diamondiferous ultrahigh pressure (UHP) terrane that stalled at depth because it is dominated by mafic eclogite. The combined Raman and geological results indicate two sets of subduction UHP diamond formation conditions/protolith are required, firstly cooler oceanic slab and secondly including higher temperature continental crust. The Copeton and Bingara stones are UHP macrodiamonds, and Carboniferous 40Ar/39Ar age dates on clinopyroxene inclusions should be interpreted as ages of crystallisation, representing the termination of subduction. The characteristic features of ruptured inclusions and etched percussion marks on Copeton and Bingara diamond indicate volcanic delivery to the earth's surface. Alluvial deposits elsewhere in Eastern Australia may carry similar diamond along with diamond of different origin.  相似文献   
556.
Spectral aerosol optical depth (AOD) measurements, carried out regularly from a network of observatories spread over the Indian mainland and adjoining islands in the Bay of Bengal and Arabian Sea, are used to examine the spatio-temporal and spectral variations during the period of ICARB (March to May 2006). The AODs and the derived Ångström parameters showed considerable variations across India during the above period. While at the southern peninsular stations the AODs decreased towards May after a peak in April, in the north Indian regions they increased continuously from March to May. The Ångström coefficients suggested enhanced coarse mode loading in the north Indian regions, compared to southern India. Nevertheless, as months progressed from March to May, the dominance of coarse mode aerosols increased in the columnar aerosol size spectrum over the entire Indian mainland, maintaining the regional distinctiveness. Compared to the above, the island stations showed considerably low AODs, so too the northeastern station Dibrugarh, indicating the prevalence of cleaner environment. Long-range transport of aerosols from tshe adjoining regions leads to remarkable changes in the magnitude of the AODs and their wavelength dependencies during March to May. HYSPLIT back-trajectory analysis shows that enhanced long-range transport of aerosols, particularly from the west Asia and northwest coastal India, contributed significantly to the enhancement of AOD and in the flattening of the spectra over entire regions; if it is the peninsular regions and the island Minicoy are more impacted in April, the north Indian regions including the Indo Gangetic Plain get affected the most during May, with the AODs soaring as high as 1.0 at 500 nm. Over the islands, the Ångström exponent (α) remained significantly lower (~1) over the Arabian Sea compared to Bay of Bengal (BoB) (~1.4) as revealed by the data respectively from Minicoy and Port Blair. Occurrences of higher values of α, showing dominance of accumulation mode aerosols, over BoB are associated well with the advection, above the boundary layer, of fine particles from the east Asian region during March and April. The change in the airmass to marine in May results in a rapid decrease in α over the BoB.  相似文献   
557.
Estimation of the degree of local seismic wave amplification (site effects) requires precise information about the local site conditions. In many regions of the world, local geologic information is either sparse or is not readily available. Because of this, seismic hazard maps for countries such as Mozambique, Pakistan and Turkey are developed without consideration of site factors and, therefore, do not provide a complete assessment of future hazards. Where local geologic information is available, details on the traditional maps often lack the precision (better than 1:10,000 scale) or the level of information required for modern seismic microzonation requirements. We use high-resolution (1:50,000) satellite imagery and newly developed image analysis methods to begin addressing this problem. Our imagery, consisting of optical data and digital elevation models (DEMs), is recorded from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor system. We apply a semi-automated, object-oriented, multi-resolution feature segmentation method to identify and extract local terrain features. Then we classify the terrain types into mountain, piedmont and basin units using geomorphometry (topographic slope) as our parameter. Next, on the basis of the site classification schemes from the Wills and Silva (1998) study and the Wills et al (2000) and Wills and Clahan (2006) maps of California, we assign the local terrain units with V s 30 (the average seismic shear-wave velocity through the upper 30m of the subsurface) ranges for selected regions in Mozambique, Pakistan and Turkey. We find that the applicability of our site class assignments in each region is a good first-approximation for quantifying local site conditions and that additional work, such as the verification of the terrain’s compositional rigidity, is needed.  相似文献   
558.
In this paper, we report observations of unusual whistlers recorded at Jammu (geomag. lat. = 22°26′N; L = 1.17), India on March 8, 1999 during the daytime. They are interpreted as one-hop ducted whistlers having propagated along higher L-values in closely spaced narrow ducts from the opposite hemispheres. After leakage from the duct, the waves might have propagated in the earth-ionosphere waveguide towards the equator in surface mode. Tentative explanation of the dynamic spectra of these events is briefly presented.  相似文献   
559.
The Kalak Nappe Complex (KNC) has been regarded as Baltica passive margin metasediments telescoped eastwards onto the Baltic (Fennoscandian) Shield during the Caledonian Orogeny. Recent studies have questioned this interpretation, instead pointing to a Neoproterozoic exotic origin. In an effort to resolve this controversy we present a Sm–Nd and U–Th–Pb study of gnessic units, traditionally considered as the depositional basement, along with cover rock sediments and intrusives. Late Palaeoproterozoic gneisses now beneath the KNC were deposited after 1948 ± 33 Ma, before intrusion of the Tjukkfjellet Granite at 1796 ± 3 Ma, and were affected by later melting events at 1765 ± 9 and 1727 ± 9 Ma. These gneisses are interpreted as part of the Baltic Shield and underlie the KNC across a tectonic contact. An unconformity between psammites of the KNC and other paragneisses previously considered as its Precambrian basement is reinterpreted as a modified sedimentary contact between Neoproterozoic metasediments. These metasediments have statistically very similar detrital zircon populations with grains as young as 1034 ± 22, 1025 ± 32 and 1014 ± 14 Ma. The results indicate that the KNC sediments were deposited during the Neoproterozoic in basins along the Laurentian margin of eastern Rodinia and were not connected to Baltica via a depositional basement. Dating of the 851 ± 5 Ma Eidvågvatnet and 853 ± 4 Ma Nordneset granites shows that intrusive material associated with the Porsanger Orogeny (c. 850 Ma) affected a considerable region of the upper KNC terrane. Later Neoproterozoic events at 711 ± 6, 687 ± 12 and 617 ± 6 Ma are also recognised the latest of which may be an expression of rifting. Since early Neoproterozoic magmatism (c. 840–690 Ma) is unknown in Baltica, these results support an exotic origin for the KNC terranes.  相似文献   
560.
There is an increasing evidence for the involvement of pre-Neoproterozoic zircons in the Arabian–Nubian Shield, a Neoproterozoic crustal tract that is generally regarded to be juvenile. The source and significance of these xenocrystic zircons are not clear. In an effort to better understand this problem, older and younger granitoids from the Egyptian basement complex were analyzed for chemical composition, SHRIMP U–Pb zircon ages, and Sm–Nd isotopic compositions. Geochemically, the older granitoids are metaluminous and exhibit characteristics of I-type granites and most likely formed in a convergent margin (arc) tectonic environment. On the other hand, the younger granites are peraluminous and exhibit the characteristics of A-type granites; these are post-collisional granites. The U–Pb SHRIMP dating of zircons revealed the ages of magmatic crystallization as well as the presence of slightly older, presumably inherited zircon grains. The age determined for the older granodiorite is 652.5 ± 2.6 Ma, whereas the younger granitoids are 595–605 Ma. Xenocrystic zircons are found in most of the younger granitoid samples; the xenocrystic grains are all Neoproterozoic, but fall into three age ranges that correspond to the ages of other Eastern Desert igneous rocks, viz. 710–690, 675–650 and 635–610 Ma. The analyzed granitoids have (+3.8 to +6.5) and crystallization ages, which confirm previous indications that the Arabian–Nubian Shield is juvenile Neoproterozoic crust. These results nevertheless indicate that older Neoproterozoic crust contributed to the formation of especially the younger granite magmas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号