全文获取类型
收费全文 | 13996篇 |
免费 | 586篇 |
国内免费 | 718篇 |
专业分类
测绘学 | 384篇 |
大气科学 | 1217篇 |
地球物理 | 3045篇 |
地质学 | 5533篇 |
海洋学 | 1147篇 |
天文学 | 2757篇 |
综合类 | 218篇 |
自然地理 | 999篇 |
出版年
2023年 | 96篇 |
2022年 | 140篇 |
2021年 | 188篇 |
2020年 | 182篇 |
2019年 | 251篇 |
2018年 | 450篇 |
2017年 | 402篇 |
2016年 | 499篇 |
2015年 | 353篇 |
2014年 | 516篇 |
2013年 | 729篇 |
2012年 | 503篇 |
2011年 | 756篇 |
2010年 | 567篇 |
2009年 | 794篇 |
2008年 | 630篇 |
2007年 | 579篇 |
2006年 | 566篇 |
2005年 | 525篇 |
2004年 | 515篇 |
2003年 | 459篇 |
2002年 | 449篇 |
2001年 | 336篇 |
2000年 | 351篇 |
1999年 | 334篇 |
1998年 | 315篇 |
1997年 | 290篇 |
1996年 | 267篇 |
1995年 | 252篇 |
1994年 | 214篇 |
1993年 | 201篇 |
1992年 | 141篇 |
1991年 | 147篇 |
1990年 | 140篇 |
1989年 | 133篇 |
1988年 | 122篇 |
1987年 | 157篇 |
1986年 | 113篇 |
1985年 | 126篇 |
1984年 | 138篇 |
1983年 | 125篇 |
1982年 | 132篇 |
1981年 | 118篇 |
1980年 | 102篇 |
1979年 | 100篇 |
1978年 | 73篇 |
1977年 | 86篇 |
1976年 | 79篇 |
1975年 | 67篇 |
1973年 | 73篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
Robert C. Aller Vanessa Madrid Josephine Y. Aller 《Geochimica et cosmochimica acta》2010,74(16):4671-4692
Sedimentary S cycling is usually conceptualized and interpreted within the context of steadily accreting (1-D) transport-reaction regimes. Unsteady processes, however, are common in many sedimentary systems and can result in dramatically different S reaction balances and diagenetic products than steady conditions. Globally important common examples include tropical deltaic topset and inner shelf muds such as those extending from the Amazon River ∼1600 km along the Guianas coast of South America. These deposits are characterized by episodic reworking of the surface seabed over vertical depths of ∼0.1-3 m. Reworked surface sediments act as unsteady, suboxic batch reactors, unconformably overlying relict anoxic, often methanic deposits, and have diagenetic properties largely decoupled from net accumulation of sediment. Despite well-oxygenated water and an abundant reactive organic matter supply, physical disturbance inhibits macrofauna, and benthic communities are dominated by microbial biomass across immense areas. In the surficial suboxic layer, molecular biological analyses, tracer experiments, sediment C/S/Fe compositions, and δ34S, δ18O of pore water indicate close coupling of anaerobic C, S, and Fe cycles. δ18O- can increase by 2-3‰ during anaerobic recycling without net change in δ34S-, demonstrating reduction coupled to complete anaerobic reoxidation to and a δ18O- reduction + reoxidation fractionation factor?12‰ (summed magnitudes). S reoxidation must be coupled to Fe-oxide reduction, contributing to high dissolved Fe2+ (∼1 mM) and Fe mobilization-export. The reworking of Amazon-Guianas shelf muds alone may isotopically alter δ18O- equivalent in mass to?25% of the annual riverine delivery of to the global ocean. Unsteady conditions result in preservation of unusually heavy δ34S isotopic compositions of residual Cr reducible S, ranging from 0‰ to >30‰ in physically reworked deposits. In contrast, bioturbated facies adjacent to physically reworked regions accumulate isotopically light S (δ34S to −20‰) in otherwise similar decomposition regimes. The isotopic patterns of both physically and biologically reworked regions can be simulated with simple diagenetic models. Heavy S isotopic signatures are largely a consequence of unsteady diffusion and progressive anaerobic burndown into underlying deposits, whereas isotopically depleted bioturbated deposits predominantly reflect biogenic diffusive scaling and isotopic distillation/diffusive pumping associated with reoxidation in burrow walls immediately adjacent to reduced zones. The S isotopic transition from unsteady physically controlled regions of the Amazon delta moving laterally into bioturbated facies mimics the transition of S isotopic patterns temporally in the geologic record during the rise of bioturbation. No special role for S disproportionation is required to explain these differences. The potential role of unsteady, suboxic diagenesis and dynamic reworking of sediments has been largely ignored in models of the evolution of surficial elemental cycling and interpretations of the geologic record. 相似文献
932.
A drift and pumpback experiment was conducted in a brackish water sandfill. The sandfill was reclaimed from the sea in the eastern part of Singapore and contains sands with low organic and clay/silt contents. The high salinity in the ground water precludes the use of chloride and bromide as tracers in such an environment, and a field experiment was conducted to assess the viability of using fluorescein as a tracer in brackish water aquifers. Nitrate was used as a second tracer to serve as a check. Initial laboratory studies showed that fluorescence was unaffected over the range of electrical conductivity and pH of the ground water. Results from the field experiment show that fluorescein appears to behave conservatively. 相似文献
933.
934.
超高强混凝土短柱抗震性能的试验研究 总被引:4,自引:0,他引:4
通过对12根剪跨比λ=2.0的超高强混凝土短柱在低周反复荷载下抗震性能的试验研究,分析了其破坏形态,并研究了轴压比和配箍率对试件滞回特性和抗震延性的影响,提出了满足一定延性要求(μ△≥3.0)超高强混凝土短柱的轴压比限值和箍筋加密区的最小配箍特征值的建议值。该值可为现行规范的修订提供参考。 相似文献
935.
936.
Available potential energy in the atmosphere 总被引:2,自引:0,他引:2
Y. L. McHall 《Meteorology and Atmospheric Physics》1990,42(1):39-55
Summary The study of available potential energy is approached in a new way. According to the second law of thermodynamics, we may find, from among the states which can be attained through all the actual processes in an isolated atmosphere, the limit state, referred to as the lowest state, that is achieved by means of reversible processes and possesses the least total potential energy. Thus, the maximum available potential energy can be estimated by taking the lowest state as the reference state. The variations of the lowest state and maximum available potential energy with baroclinity and mean static stability are illustrated graphically as some examples in the text. This study gives a more fundamental understanding for the kinetic energy generation in the baroclinic atmosphere. Also, the extreme kinetic generation in irreversible processes is investigated. The obtained results may be adopted for the energetics of explosive systems in the atmosphere.With 10 Figures 相似文献
937.
938.
We have previously shown that lead (lead chloride) and a polychlorinated biphenyl (PCB) mixture (Aroclor 1254) can alter hypothalamic serotonin (5-hydroxytryptamine, 5-HT) content, and pituitary gonadotropin II (GTH II) release in vitro, in the Atlantic croaker (Micropogonias undulatus). In the present study we investigated whether impairment of the hypothalamic 5-HT pathway involves alterations in tryptophan hydroxylase (TPH), the rate-limiting enzyme in 5-HT biosynthesis, or monoamine oxidase (MAO), the catabolic enzyme. Aroclor 1254 (1 mg/kg body wt. for 30 days) significantly inhibited hypothalamic TPH activity without altering MAO activity, and caused a significant decline in 5-HT content. On the other hand, lead exposure (15 mg/kg body wt. for 30 days) only induced a slight decrease in hypothalamic 5-HT content and TPH activity, and a minor increase in MAO activity. However, both Aroclor 1254 and lead significantly inhibited the GTH II response to stimulation by a luteinizing hormone-releasing hormone analog (LHRHa) in vivo and caused reduced gonadal growth. These results demonstrate that impairment of hypothalamic serotonin metabolism by Aroclor 1254 involves inhibition of 5-HT synthesis, whereas lead does not exert a profound influence on 5-HT metabolism. The decline in 5-HT availability due to reduced 5-HT synthesis in the PCB-exposed fish may result in disruption of the stimulatory 5-HT-GnRH pathway controlling GTH II secretion leading to impairment of gonadal growth. 相似文献
939.
940.
Efrat Farber Ittai Gavrieli Thomas D. Bullen Ran Holtzman Uri Shavit 《Geochimica et cosmochimica acta》2004,68(9):1989-2006
The chemical and isotopic (87Sr/86Sr, δ11B, δ34Ssulfate, δ18Owater, δ15Nnitrate) compositions of water from the Lower Jordan River and its major tributaries between the Sea of Galilee and the Dead Sea were determined in order to reveal the origin of the salinity of the Jordan River. We identified three separate hydrological zones along the flow of the river:
- (1)
- A northern section (20 km downstream of its source) where the base flow composed of diverted saline and wastewaters is modified due to discharge of shallow sulfate-rich groundwater, characterized by low 87Sr/86Sr (0.7072), δ34Ssulfate (−2‰), high δ11B (∼36‰), δ15Nnitrate (∼15‰) and high δ18Owater (−2 to-3‰) values. The shallow groundwater is derived from agricultural drainage water mixed with natural saline groundwater and discharges to both the Jordan and Yarmouk rivers. The contribution of the groundwater component in the Jordan River flow, deduced from mixing relationships of solutes and strontium isotopes, varies from 20 to 50% of the total flow.
- (2)
- A central zone (20-50 km downstream from its source) where salt variations are minimal and the rise of 87Sr/86Sr and SO4/Cl ratios reflects predominance of eastern surface water flows.
- (3)
- A southern section (50-100 km downstream of its source) where the total dissolved solids of the Jordan River increase, particularly during the spring (70-80 km) and summer (80-100 km) to values as high as 11.1 g/L. Variations in the chemical and isotopic compositions of river water along the southern section suggest that the Zarqa River (87Sr/86Sr∼0.70865; δ11B∼25‰) has a negligible affect on the Jordan River. Instead, the river quality is influenced primarily by groundwater discharge composed of sulfate-rich saline groundwater (Cl-=31-180 mM; SO4/Cl∼0.2-0.5; Br/Cl∼2-3×10-3; 87Sr/86Sr∼0.70805; δ11B∼30‰; δ15Nnitrate ∼17‰, δ34Ssulfate=4-10‰), and Ca-chloride Rift valley brines (Cl-=846-1500 mM; Br/Cl∼6-8×10-3; 87Sr/86Sr∼0.7080; δ11B>40‰; δ34Ssulfate=4-10‰). Mixing calculations indicate that the groundwater discharged to the river is composed of varying proportions of brines and sulfate-rich saline groundwater. Solute mass balance calculations point to a ∼10% contribution of saline groundwater (Cl−=282 to 564 mM) to the river. A high nitrate level (up to 2.5 mM) in the groundwater suggests that drainage of wastewater derived irrigation water is an important source for the groundwater. This irrigation water appears to leach Pleistocene sediments of the Jordan Valley resulting in elevated sulfate contents and altered strontium and boron isotopic compositions of the groundwater that in turn impacts the water quality of the lower Jordan River.