首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4987篇
  免费   183篇
  国内免费   52篇
测绘学   122篇
大气科学   408篇
地球物理   1147篇
地质学   1826篇
海洋学   371篇
天文学   872篇
综合类   17篇
自然地理   459篇
  2022年   29篇
  2021年   63篇
  2020年   68篇
  2019年   92篇
  2018年   144篇
  2017年   150篇
  2016年   155篇
  2015年   134篇
  2014年   186篇
  2013年   266篇
  2012年   204篇
  2011年   269篇
  2010年   214篇
  2009年   266篇
  2008年   215篇
  2007年   195篇
  2006年   179篇
  2005年   174篇
  2004年   187篇
  2003年   162篇
  2002年   165篇
  2001年   82篇
  2000年   91篇
  1999年   76篇
  1998年   91篇
  1997年   69篇
  1996年   66篇
  1995年   64篇
  1994年   57篇
  1993年   65篇
  1992年   46篇
  1991年   40篇
  1990年   41篇
  1989年   42篇
  1988年   48篇
  1987年   50篇
  1986年   47篇
  1985年   58篇
  1984年   67篇
  1983年   53篇
  1982年   58篇
  1981年   50篇
  1980年   49篇
  1979年   47篇
  1978年   44篇
  1977年   37篇
  1976年   32篇
  1975年   32篇
  1974年   33篇
  1973年   32篇
排序方式: 共有5222条查询结果,搜索用时 15 毫秒
51.
In the framework of the EGER (ExchanGE processes in mountainous Regions) project, the contribution of coherent structures to vertical and horizontal transports in a tall spruce canopy is investigated. The combination of measurements done in both the vertical and horizontal directions allows us to investigate coherent structures, their temporal scales, their role in flux transport, vertical coupling between the sub-canopy, canopy and air above the canopy, and horizontal coupling in the sub-canopy layer. The temporal scales of coherent structures detected with the horizontally distributed systems in the sub-canopy layer are larger than the temporal scales of coherent structures detected with the vertically distributed systems. The flux contribution of coherent structures to the momentum and sensible heat transport is found to be dominant in the canopy layer. Carbon dioxide and latent heat transport by coherent structures increase with height and reach a maximum at the canopy height. The flux contribution of the ejection decreases with increasing height and becomes dominant above the canopy level. The flux fraction transported during the sweep increases with height and becomes the dominant exchange process at the upper canopy level. The determined exchange regimes indicate consistent decoupling between the sub-canopy, canopy and air above the canopy during evening, nighttime and morning hours, whereas the coupled states and coupled by sweep states between layers are observed mostly during the daytime. Furthermore, the horizontal transport of sensible heat by coherent structures is investigated, and the heterogeneity of the contribution of coherent events to the flux transport is demonstrated. A scheme to determine the horizontal coupling by coherent structures in the sub-canopy layer is proposed, and it is shown that the sub-canopy layer is horizontally coupled mainly in the wind direction. The vertical coupling in most cases is observed together with streamwise horizontal coupling, whereas the cross-stream direction is decoupled.  相似文献   
52.
The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1°C, ice sheet topography, reduced CO2, and 21,000 BP orbital parameters. The high-resolution model captures modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1°C less than the control run, there are many lowland tropical land areas 4–6°C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have significant implications for ocean circulation changes during the LGM. A large part of the Amazon and Congo Basins are simulated to be substantially drier in the ice age—consistent with many (but not all) paleo data. These results suggest that there are considerable benefits derived from high-resolution model regarding regional climate responses, and that observationalists can now compare their results with models that resolve geography at a resolution comparable to that which the proxy data represent.  相似文献   
53.
Inverse-dispersion calculations can be used to infer atmospheric emission rates through a combination of downwind gas concentrations and dispersion model predictions. With multiple concentration sensors downwind of a compound source (whose component positions are known) it is possible to calculate the component emissions. With this in mind, a field experiment was conducted to examine the feasibility of such multi-source inferences, using four synthetic area sources and eight concentration sensors arranged in different configurations. Multi-source problems tend to be mathematically ill-conditioned, as expressed by the condition number κ. In our most successful configuration (average κ = 4.2) the total emissions from all sources were deduced to within 10% on average, while component emissions were deduced to within 50%. In our least successful configuration (average κ = 91) the total emissions were calculated to within only 50%, and component calculations were highly inaccurate. Our study indicates that the most accurate multi-source inferences will occur if each sensor is influenced by only a single source. A “progressive” layout is the next best: one sensor is positioned to “see” only one source, the next sensor is placed to see the first source and another, a third sensor is placed to see the previous two plus a third, and so on. When it is not possible to isolate any sources κ is large and the accuracy of a multi-source inference is doubtful.  相似文献   
54.
We review studies of the Holocene and Late Pleistocene stratigraphy of eastern Iran to infer past changes in the environment within this presently arid region. We build a scenario of widespread, and presumably climatically driven, evolution of the landscape through the Holocene. Six sites, covering a 10° range in latitude, indicate a regional abandonment of alluvial fan surfaces at ~10 ± 3 ka, with the younger (~9 ka) end of this age range supported by several of the best-constrained studies. Incision of rivers into the fan surfaces has occurred in discrete stages in the early to mid-Holocene (~9–7 ka) leading to the formation of flights of river terraces. Detailed records of lakebed deposition in the presently arid interior of Iran are rare, though the available data indicate lake highstand conditions at <7.8 ka at South Golbaf in SE Iran and at < 8.7 ± 1.1 ka at the Nimbluk plain in NE Iran. The major periods of Holocene landscape development hence correlate with a period of time where water was more abundant than at present, with incision of rivers into thick alluvial deposits possibly occurring due to a combination of decreased sediment supply and high levels of precipitation, and with the formation of inset river terraces possibly responding to century-scale fluctuations in precipitation. No major geomorphic changes are identified within the later part of the Holocene, from which we infer that increased aridity has slowed evolution of the landscape. A decrease in precipitation in the mid-Holocene may have had a detrimental effect on bronze age societies in eastern Iran as has been inferred elsewhere in the eastern Mediterranean region. The pre-Holocene environmental changes in eastern Iran are less well constrained, though there are suggestions of alluvial fan abandonment at 40–60 ka, at ~80 ka, and at ~120 ka.  相似文献   
55.
Previous studies on lipid biomarkers preserved in Chinese stalagmites have indicated that ratios of low‐molecular‐weight (LMW) to high‐molecular‐weight (HMW) n‐alkanes, n‐alkan‐2‐ones, n‐alkanols and n‐alkanoic acids can be used as an index of vegetation versus microbial organic matter input to the system and, by extension, a marker of climatic changes, with increases in the proportion of LMW compounds coinciding with colder periods. Here we test whether this hypothesis is equally applicable to a different geographical region (north‐west Scotland), by examining a stalagmite record of the past 200 years, and a wider range of lipid markers. We also test the applicability of other lipid proxies in this context, including the use of n‐alkane ratios, to interpret vegetation changes, and unsaturated alkanoic acid ratios as climatic indicators. The results show that lipid proxies preserved in stalagmites, and especially those related to vegetation, are potentially extremely useful in palaeoenvironmental research. Of particular value is the use of C27/C31 n‐alkane ratios as a proxy for vegetation change, clearly indicating variations between herbaceous and arboreal cover. This proxy has now been successfully applied to samples from diverse environments, and can be considered sufficiently robust to be of use in analysing future stalagmite records. It will be of particular value in areas where reliable pollen records are not available, as is often the case with deeper cave deposits. However, the division between LMW and HMW aliphatic compounds is not a clear‐cut case of microbial versus plant activity, with the changes in LMW compounds relating more closely to those in their HMW analogues than in specific bacterial biomarkers. The use of unsaturated alkanoic acid ratios here gives conflicting results, with the observed variation through time depending on the isomer measured. The discrepancies between the findings of this study and previous work are likely to be due to the varying controls on the lipids (original organic matter input, and compound degradation), which in turn will be affected by whether the main climatic limiting factor on the soil is temperature or precipitation. This suggests that lipid proxies preserved in stalagmites must be interpreted with care, particularly in the case of bacterial compounds which may be derived from within the cave or from the soil. However, many of these issues can be resolved by the use of multi‐proxy studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
56.
57.
Marine chemistry of the coastal environment starts with principles of rock weathering that use carbonic acid to mobilize elements, only some of which comprise the majority of sea salt. The principle reason is reverse weathering, extensively represented in coastal waters, and returns most elements to newly formed colloids or minerals while recycling carbon dioxide to the atmosphere. This includes the deeper ocean expanse of sediment diagenesis, plus hydrothermal plumes and attendant low-temperature basalt alteration. Within the estuarine and extended shelf regimes, both conservative and non-conservative processes can be distinguished and modeled to determine proportions of weathered elements transmitted to the sea or consumed by reverse weathering. Conceptually, the steady-state processes that lead to the composition of seawater can be viewed as heterogeneous equilibria between dissolved constituents and solid mineral products taking hundreds of millennia. However, initial processes in the estuarine and coastal environment are characterized by shorter term scavenging associated with inorganic and organic colloids. These recycle both carbon and trace elements on timescales commensurate with estuarine flushing and coastal exchange with the ocean. The natural uranium and thorium decay series provide powerful tools for quantifying the rates of estuarine processes, including those within groundwater and the subterranean estuary. In the future, new mass spectrometric and nuclear magnetic resonance techniques will help to define the molecular nature of newly formed estuarine colloids as has been done for dissolved organic matter. As the coastal environment undergoes the forces of climate change in the form of warming and sea level rise, future research should address how these will impact chemistry of the coastal environment as a net source or sink of carbon dioxide and associated organic material.  相似文献   
58.
Revised Universal Soil Loss Equation(RUSLE) model coupled with transport limited sediment delivery(TLSD) function was used to predict the longtime average annual soil loss, and to identify the critical erosion-/deposition-prone areas in a tropical mountain river basin, viz., Muthirapuzha River Basin(MRB; area=271.75 km~2), in the southern Western Ghats, India. Mean gross soil erosion in MRB is 14.36 t ha~(-1) yr~(-1), whereas mean net soil erosion(i.e., gross erosion-deposition) is only 3.60 t ha~(-1) yr~(-1)(i.e., roughly 25% of the gross erosion). Majority of the basin area(~86%) experiences only slight erosion(5 t ha~(-1) yr~(-1)), and nearly 3% of the area functions as depositional environment for the eroded sediments(e.g., the terraces of stream reaches, the gentle plains as well as the foot slopes of the plateau scarps and the terrain with concordant summits). Although mean gross soil erosion rates in the natural vegetation belts are relatively higher, compared to agriculture, settlement/built-up areas and tea plantation, the sediment transport efficiency in agricultural areas and tea plantation is significantly high,reflecting the role of human activities on accelerated soil erosion. In MRB, on a mean basis, 0.42 t of soil organic carbon(SOC) content is being eroded per hectare annually, and SOC loss from the 4th order subbasins shows considerable differences, mainly due to the spatial variability in the gross soil erosion rates among the sub-basins. The quantitative results, on soil erosion and deposition, modelled using RUSLE and TLSD, are expected to be beneficial while formulating comprehensive land management strategies for reducing the extent of soil degradation in tropical mountain river basins.  相似文献   
59.
60.
The majority of emissions of nitrous oxide – a potent greenhouse gas (GHG) – are from agricultural sources, particularly nitrogen fertilizer applications. A growing focus on these emission sources has led to the development in the United States of GHG offset protocols that could enable payment to farmers for reducing fertilizer use or implementing other nitrogen management strategies. Despite the development of several protocols, the current regional scope is narrow, adoption by farmers is low, and policy implementation of protocols has a significant time lag. Here we utilize existing research and policy structures to propose an ‘umbrella’ approach for nitrogen management GHG emissions protocols that has the potential to streamline the policy implementation and acceptance of such protocols. We suggest that the umbrella protocol could set forth standard definitions common across multiple protocol options, and then modules could be further developed as scientific evidence advances. Modules could be developed for specific crops, regions, and practices. We identify a policy process that could facilitate this development in concert with emerging scientific research and conclude by acknowledging potential benefits and limitations of the approach.

Key policy insights

  • Agricultural greenhouse gas market options are growing, but are still underutilized

  • Streamlining protocol development through an umbrella process could enable quicker development of protocols across new crops, regions, and practices

  • Effective protocol development must not compromise best available science and should follow a rigorous pathway to ensure appropriate implementation

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号