首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5508篇
  免费   228篇
  国内免费   53篇
测绘学   133篇
大气科学   443篇
地球物理   1273篇
地质学   2072篇
海洋学   406篇
天文学   948篇
综合类   18篇
自然地理   496篇
  2021年   67篇
  2020年   74篇
  2019年   92篇
  2018年   152篇
  2017年   153篇
  2016年   162篇
  2015年   138篇
  2014年   197篇
  2013年   279篇
  2012年   221篇
  2011年   283篇
  2010年   219篇
  2009年   290篇
  2008年   239篇
  2007年   211篇
  2006年   203篇
  2005年   194篇
  2004年   206篇
  2003年   175篇
  2002年   183篇
  2001年   98篇
  2000年   95篇
  1999年   83篇
  1998年   99篇
  1997年   72篇
  1996年   71篇
  1995年   66篇
  1994年   63篇
  1993年   69篇
  1992年   53篇
  1991年   49篇
  1990年   45篇
  1989年   45篇
  1988年   49篇
  1987年   57篇
  1986年   52篇
  1985年   62篇
  1984年   75篇
  1983年   62篇
  1982年   66篇
  1981年   54篇
  1980年   56篇
  1979年   49篇
  1978年   48篇
  1977年   49篇
  1976年   39篇
  1975年   39篇
  1974年   41篇
  1973年   36篇
  1972年   31篇
排序方式: 共有5789条查询结果,搜索用时 15 毫秒
871.
872.
Water runoff and sediment transport from agricultural uplands are substantial threats to water quality and sustained crop production. To improve soil and water resources, farmers, conservationists, and policy‐makers must understand how landforms, soil types, farming practices, and rainfall interact with water runoff and soil erosion processes. To that end, the Iowa Daily Erosion Project (IDEP) was designed and implemented in 2003 to inventory these factors across Iowa in the United States. IDEP utilized the Water Erosion Prediction Project (WEPP) soil erosion model along with radar‐derived precipitation data and government‐provided slope, soil, and management information to produce daily estimates of soil erosion and runoff at the township scale (93 km2 [36 mi2]). Improved national databases and evolving remote sensing technology now permit the derivation of slope, soil, and field‐level management inputs for WEPP. These remotely sensed parameters, along with more detailed meteorological data, now drive daily WEPP hillslope soil erosion and water runoff estimates at the small watershed scale, approximately 90 km2 (35 mi2), across sections of multiple Midwest states. The revisions constitute a substantial improvement as more realistic field conditions are reflected, more detailed weather data are utilized, hill slope sampling density is an order of magnitude greater, and results are aggregated based on surface hydrology enabling further watershed research and analysis. Considering these improvements and the expansion of the project beyond Iowa it was renamed the Daily Erosion Project (DEP). Statistical and comparative evaluations of soil erosion simulations indicate that the sampling density is adequate and the results are defendable. The modeling framework developed is readily adaptable to other regions given suitable inputs. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
873.
The long-term average annual soil loss (A) and sediment yield (SY) in a tropical monsoon-dominated river basin in the southern Western Ghats, India (Muthirapuzha River Basin, MRB; area: 271.75 km2), were predicted by coupling the Revised Universal Soil Loss Equation (RUSLE) and sediment delivery ratio (SDR) models. Moreover, the study also delineated soil erosion risk zones based on the soil erosion potential index (SEPI) using the analytic hierarchy process (AHP) technique. Mean A of the basin is 14.36 t ha?1 year?1, while mean SY is only 3.65 t ha?1 year?1. Although the land use/land cover types with human interference show relatively lower A compared to natural vegetation, their higher SDR values reflect the significance of anthropogenic activities in accelerated soil erosion. The soil erosion risk in the MRB is strongly controlled by slope, land use/land cover and relative relief, compared to geomorphology, drainage density, stream frequency and lineament frequency.  相似文献   
874.
A new depth-averaged exploratory model has been developed to investigate the hydrodynamics and the tidally averaged sediment transport in a semi-enclosed tidal basin. This model comprises the two-dimensional (2DH) dynamics in a tidal basin that consists of a channel of arbitrary length, flanked by tidal flats, in which the water motion is being driven by an asymmetric tidal forcing at the seaward side. The equations are discretized in space by means of the finite element method and solved in the frequency domain. In this study, the lateral variations of the tidal asymmetry and the tidally averaged sediment transport are analyzed, as well as their sensitivity to changes in basin geometry and external overtides. The Coriolis force is taken into account. It is found that the length of the tidal basin and, to a lesser extent, the tidal flat area and the convergence length determine the behaviour of the tidally averaged velocity and the overtides and consequently control the strength and the direction of the tidally averaged sediment transport. Furthermore, the externally prescribed overtides can have a major influence on tidal asymmetry in the basin, depending on their amplitude and phase. Finally, for sufficiently wide tidal basins, the Coriolis force generates significant lateral dynamics.  相似文献   
875.
876.
The primary objective of this study is to further substantiate multistep climatic forcing of late‐glacial vegetation in southern South America. A secondary objective is to establish the age of deglaciation in Estrecho de Magallanes–Bahía Inútil. Pollen assemblages at 2‐cm intervals in a core of the mire at Puerto del Hambre (53°36′21″S, 70°55′53″W) provide the basis for reconstructing the vegetation and a detailed account of palaeoclimate in subantarctic Patagonia. Chronology over the 262‐cm length of core is regulated by 20 AMS radiocarbon dates between 14 455 and 10 089 14C yr BP. Of 13 pollen assemblage zones, the earliest representing the Oldest Dryas chronozone (14 455–13 000 14C yr BP) records impoverished steppe with decreasing frequencies and loss of southern beech (Nothofagus). Successive 100‐yr‐long episodes of grass/herbs and of heath (Empetrum/Ericaceae) before 14 000 14C yr BP infer deglacial successional communities under a climate of increased continentality prior to the establishment of grass‐dominated steppe. The Bølling–Allerød (13 000–11 000 14C yr BP) is characterised by mesic grassland under moderating climate that with abrupt change to heath dominance after 12 000 14C yr BP was warmer and not as humid. At the time of the Younger Dryas (11 000–10 000 14C yr BP), grass steppe expanded with a return of colder, more humid climate. Later, with gradual warming, communities were invaded by southern beech. The Puerto del Hambre record parallels multistep, deglacial palaeoclimatic sequences reported elsewhere in the Southern Andes and at Taylor Dome in Antarctica. Deglaciation of Estrecho de Magallanes–Bahía Inútil is dated close to 14 455 14C yr BP, invalidating earlier dates of between 15 800 and 16 590 14C yr BP. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
877.
While there are numerous thick loess–palaeosol sequences preserved across the Carpathian Basin, well dated sites that provide terrestrial palaeoenvironmental records extending beyond last glacial–interglacial cycle are scarce. Robust chronologies are essential for correlations of loess with other long-term Quaternary records and to further understanding of the palaeoenvironment and climate of this important region beyond the last 125 ka. Here a new geochronology based on 13 post-infrared infrared stimulated luminescence ages focused on the lower part of the loess–palaeosol sequence at Erdut is presented. The results show that the lower part of the Erdut profile spans the penultimate glacial cycle (MIS 7 to MIS 5). The considerable sediments overlaying the investigated part of the profile suggest that this section spans two glacial cycles, rather than the previously suggested one. The most likely source of the discrepancy is the use of uncorrected infrared stimulated luminescence signal, which can cause age underestimation if not accounted for. This study demonstrates the need to revisit sites such as Erdut, re-date them using updated measurement protocols, and update existing palaeoenvironmental interpretations.  相似文献   
878.
This paper focuses attention on the development of a numerical model of the hydro/thermo/mechanical behaviour of unsaturated clay and its consequent verification and validation. The work presented describes on-going collaboration between the Cardiff School of Engineering and Atomic Energy of Canada. The model development, which was carried out at Cardiff, can be described as being based on a mechanistic approach to coupled heat, moisture and air flow. This is then linked to a deformation analysis of the material within a ‘consolidation’ type of model. The whole is solved via the finite element method to yield a computer software code named COMPASS (COde for Modelling PArtly Saturated Soil). Some aspects of verification and validation of the model have been addressed in-house. However, the purpose of current AECL work is to provide an independent, rigorous, structured programme of validation and the paper will also explore the further validation of COMPASS within this context. © 1998 by John Wiley & Sons, Ltd.  相似文献   
879.
Using data from glacial geomorphology, tephra–soil stratigraphy and mineralogy, palynology, and radiocarbon dating, a sequence of glacial and bioclimatic stades and interstades has been identified for the last ca. 50000 yr in the Ruiz-Tolima massif, Cordillera Central, Colombia. Six Pleistocene cold stades separated by warmer interstades occurred: before 48000, between 48000 and 33000, between 28000 and 21000, from ≥16000 to ca. 14000, ca. 13000–12400, and ca. 11000–10000 yr BP. Although these radiocarbon ages are minimum-limiting ages obtained from tephra layers on top of tills, the tills are not significantly older because most are bracketed by dated tephra sets in measured stratigraphic sections. Two minor moraine stages likely reflect glacier standstill during cold intervals ca. 7400 yr BP and slightly earlier. Finally, glaciers readvanced between the seventeenth and nineteenth centuries. In contrast to the ice-clad volcanoes of the massif, ca. 34 km2 in area above an altitude of ca. 4800 m, the ice cover expanded to 1200 km2 during the Last Glacial Maximum (LGM) and was still 800 km2 during Late-glacial time (LGT). Glacier reconstructions based on the moraines suggest depression of the equilibrium line altitude (ELA) by ca. 1100 m during the LGM and 500–600 m during LGT relative to the modern ELA, which lies at ca. 5100 m in the Cordillera Central. Glaciers in this region apparently reached their greatest extent when the climate was cold and wet, e.g. during stades corresponding to Oxygen Isotope Stage 3; glaciers were still expanding during the LGM ca. 28000–21000 yr BP, but they shrank considerably after 21000 yr BP because of greatly reduced precipitation. © 1997 John Wiley & Sons, Ltd.  相似文献   
880.
The devastating impacts of the widespread flooding and landsliding in Puerto Rico following the September 2017 landfall of Hurricane Maria highlight the increasingly extreme atmospheric disturbances and enhanced hazard potential in mountainous humid-tropical climate zones. Long-standing conceptual models for hydrologically driven hazards in Puerto Rico posit that hillslope soils remain wet throughout the year, and therefore, that antecedent soil wetness imposes a negligible effect on hazard potential. Our post-Maria in situ hillslope hydrologic observations, however, indicate that while some slopes remain wet throughout the year, others exhibit appreciable seasonal and intra-storm subsurface drainage. Therefore, we evaluated the performance of hydro-meteorological (soil wetness and rainfall) versus intensity-duration (rainfall only) hillslope hydrologic response thresholds that identify the onset of positive pore-water pressure, a predisposing factor for widespread slope instability in this region. Our analyses also consider the role of soil-water storage and infiltration rates on runoff generation, which are relevant factors for flooding hazards. We found that the hydro-meteorological thresholds outperformed intensity-duration thresholds for a seasonally wet, coarse-grained soil, although they did not outperform intensity-duration thresholds for a perennially wet, fine-grained soil. These end-member soils types may also produce radically different stormflow responses, with subsurface flow being more common for the coarse-grained soils underlain by intrusive rocks versus infiltration excess and/or saturation excess for the fine-grained soils underlain by volcaniclastic rocks. We conclude that variability in soil-hydraulic properties, as opposed to climate zone, is the dominant factor that controls runoff generation mechanisms and modulates the relative importance of antecedent soil wetness for our hillslope hydrologic response thresholds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号