首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4883篇
  免费   210篇
  国内免费   53篇
测绘学   122篇
大气科学   406篇
地球物理   1120篇
地质学   1816篇
海洋学   352篇
天文学   868篇
综合类   17篇
自然地理   445篇
  2022年   28篇
  2021年   63篇
  2020年   67篇
  2019年   90篇
  2018年   142篇
  2017年   149篇
  2016年   152篇
  2015年   133篇
  2014年   185篇
  2013年   258篇
  2012年   203篇
  2011年   266篇
  2010年   208篇
  2009年   261篇
  2008年   214篇
  2007年   193篇
  2006年   176篇
  2005年   174篇
  2004年   184篇
  2003年   161篇
  2002年   161篇
  2001年   81篇
  2000年   89篇
  1999年   73篇
  1998年   90篇
  1997年   68篇
  1996年   65篇
  1995年   61篇
  1994年   55篇
  1993年   64篇
  1992年   47篇
  1991年   40篇
  1990年   40篇
  1989年   41篇
  1988年   47篇
  1987年   50篇
  1986年   47篇
  1985年   57篇
  1984年   67篇
  1983年   51篇
  1982年   57篇
  1981年   47篇
  1980年   48篇
  1979年   46篇
  1978年   44篇
  1977年   37篇
  1976年   32篇
  1975年   32篇
  1974年   33篇
  1973年   32篇
排序方式: 共有5146条查询结果,搜索用时 15 毫秒
921.
922.
Within the conceptual framework of Complex Systems, we discuss the importance and challenges in extracting and linking multiscale objects from high-resolution remote sensing imagery to improve the monitoring, modeling and management of complex landscapes. In particular, we emphasize that remote sensing data are a particular case of the modifiable areal unit problem (MAUP) and describe how image-objects provide a way to reduce this problem. We then hypothesize that multiscale analysis should be guided by the intrinsic scale of the dominant landscape objects composing a scene and describe three different multiscale image-processing techniques with the potential to achieve this. Each of these techniques, i.e., Fractal Net Evolution Approach (FNEA), Linear Scale-Space and Blob-Feature Detection (SS), and Multiscale Object-Specific Analysis (MOSA), facilitates the multiscale pattern analysis, exploration and hierarchical linking of image-objects based on methods that derive spatially explicit multiscale contextual information from a single resolution of remote sensing imagery. We then outline the weaknesses and strengths of each technique and provide strategies for their improvement.  相似文献   
923.
气候变化对中国水资源影响的适应性评估与管理框架   总被引:8,自引:0,他引:8  
 通过论述气候变化对中国水资源影响的适应性评估与管理框架,提出一个气候变化影响决策评估工具,它包括:未来气候变化对中国水资源潜在影响的定性描述分析、半定量与定量分析以及适应性对策评估。由于不同气候区域所面临的水资源问题不同,选择中国4个典型案例区域,并确定不同的目标进行气候变化适应性管理综合研究,提出了甄别气候变化影响和适应性管理的新的思路、框架与方法论。该项研究为应对未来气候变化影响的水资源规划与风险管理提供了途径与方法。  相似文献   
924.
925.
Even along the generally uplifting coast of the Pacific US, local geologic structures can cause subsidence. In this study, we quantify Holocene-averaged subsidence rates in four estuaries (Carpinteria Slough, Goleta Slough, Campus Lagoon, and Morro Bay) along the southern and central California coast by comparing radiocarbon-dated estuarine material to a regional sea-level curve. Holocene-averaged rates of vertical motion range from subsidence of 1.4?±?2.4, 1.2±0.4, and 0.4?±?0.3 mm/year in Morro Bay, Carpinteria Slough, and Goleta Slough, respectively, to possible uplift in Campus Lagoon (?0.1?±?0.9 mm/year). The calculated rates of subsidence are of the same magnitude as rates of relative sea-level rise experienced over the late Holocene and effectively double the ongoing rates of relative sea-level rise experienced over the last five decades on other parts of the coast. The difference in rates of vertical motion among these four estuaries is attributed to their geological settings. Estuaries developed in subsiding geological structures such as synclines and fault-bounded basins are subsiding at much higher rates than those developed within flooded river valleys incised into marine terraces. Restoration projects accounting for future sea-level rise must consider the geologic setting of the estuaries and, if applicable, include subsidence in future sea-level rise scenarios, even along the tectonically uplifting US Pacific Coast.  相似文献   
926.
The chemical and isotopic (87Sr/86Sr, δ11B, δ34Ssulfate, δ18Owater, δ15Nnitrate) compositions of water from the Lower Jordan River and its major tributaries between the Sea of Galilee and the Dead Sea were determined in order to reveal the origin of the salinity of the Jordan River. We identified three separate hydrological zones along the flow of the river:
(1)
A northern section (20 km downstream of its source) where the base flow composed of diverted saline and wastewaters is modified due to discharge of shallow sulfate-rich groundwater, characterized by low 87Sr/86Sr (0.7072), δ34Ssulfate (−2‰), high δ11B (∼36‰), δ15Nnitrate (∼15‰) and high δ18Owater (−2 to-3‰) values. The shallow groundwater is derived from agricultural drainage water mixed with natural saline groundwater and discharges to both the Jordan and Yarmouk rivers. The contribution of the groundwater component in the Jordan River flow, deduced from mixing relationships of solutes and strontium isotopes, varies from 20 to 50% of the total flow.
(2)
A central zone (20-50 km downstream from its source) where salt variations are minimal and the rise of 87Sr/86Sr and SO4/Cl ratios reflects predominance of eastern surface water flows.
(3)
A southern section (50-100 km downstream of its source) where the total dissolved solids of the Jordan River increase, particularly during the spring (70-80 km) and summer (80-100 km) to values as high as 11.1 g/L. Variations in the chemical and isotopic compositions of river water along the southern section suggest that the Zarqa River (87Sr/86Sr∼0.70865; δ11B∼25‰) has a negligible affect on the Jordan River. Instead, the river quality is influenced primarily by groundwater discharge composed of sulfate-rich saline groundwater (Cl-=31-180 mM; SO4/Cl∼0.2-0.5; Br/Cl∼2-3×10-3; 87Sr/86Sr∼0.70805; δ11B∼30‰; δ15Nnitrate ∼17‰, δ34Ssulfate=4-10‰), and Ca-chloride Rift valley brines (Cl-=846-1500 mM; Br/Cl∼6-8×10-3; 87Sr/86Sr∼0.7080; δ11B>40‰; δ34Ssulfate=4-10‰). Mixing calculations indicate that the groundwater discharged to the river is composed of varying proportions of brines and sulfate-rich saline groundwater. Solute mass balance calculations point to a ∼10% contribution of saline groundwater (Cl=282 to 564 mM) to the river. A high nitrate level (up to 2.5 mM) in the groundwater suggests that drainage of wastewater derived irrigation water is an important source for the groundwater. This irrigation water appears to leach Pleistocene sediments of the Jordan Valley resulting in elevated sulfate contents and altered strontium and boron isotopic compositions of the groundwater that in turn impacts the water quality of the lower Jordan River.
  相似文献   
927.
928.
Models of late-glacial environmental change in coastal areas are commonly based on radiocarbon ages on marine shell and basal lake sediments, both of which may be compromised by reservoir effects. The magnitude of the oceanic reservoir age in the inland waters of the Georgia Basin and Puget Lowland of northwestern North America is inferred from radiocarbon ages on shell-wood pairs in Saanich Inlet and previously published estimates. The weighted mean oceanic reservoir correction in the early and mid Holocene is −720±90 yr, slightly smaller than, but not significantly different from, the modern value. The correction in late-glacial time is −950±50 yr. Valley-head sites yield higher reservoir values (−1200±130 yr) immediately after deglaciation. The magnitude of the gyttja reservoir effect is inferred from pairs of bulk gyttja and plant macrofossil ages from four lakes in the region. Incorporation of old carbon into basal gyttja yields ages from bulk samples that are initially about 600 yr too old. The reservoir age declines to less than 100 yr after the first millennium of lake development. When these corrections are accounted for, dates of deglaciation and late-glacial sea-level change in the study area are pushed forward in time by more than 500 yr.  相似文献   
929.
Natural resource-dependent societies in developing countries are facing increased pressures linked to global climate change. While social-ecological systems evolve to accommodate variability, there is growing evidence that changes in drought, storm and flood extremes are increasing exposure of currently vulnerable populations. In many countries in Africa, these pressures are compounded by disruption to institutions and variability in livelihoods and income. The interactions of both rapid and slow onset livelihood disturbance contribute to enduring poverty and slow processes of rural livelihood renewal across a complex landscape. We explore cross-scale dynamics in coping and adaptation response, drawing on qualitative data from a case study in Mozambique. The research characterises the engagements across multiple institutional scales and the types of agents involved, providing insight into emergent conditions for adaptation to climate change in rural economies. The analysis explores local responses to climate shocks, food security and poverty reduction, through informal institutions, forms of livelihood diversification and collective land-use systems that allow reciprocity, flexibility and the ability to buffer shocks. However, the analysis shows that agricultural initiatives have helped to facilitate effective livelihood renewal, through the reorganisation of social institutions and opportunities for communication, innovation and micro-credit. Although there are challenges to mainstreaming adaptation at different scales, this research shows why it is critical to assess how policies can protect conditions for emergence of livelihood transformation.  相似文献   
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号