首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   364篇
  免费   15篇
测绘学   4篇
大气科学   25篇
地球物理   78篇
地质学   161篇
海洋学   27篇
天文学   33篇
自然地理   51篇
  2021年   9篇
  2020年   6篇
  2019年   6篇
  2018年   7篇
  2017年   3篇
  2016年   9篇
  2015年   10篇
  2014年   7篇
  2013年   14篇
  2012年   16篇
  2011年   15篇
  2010年   10篇
  2009年   13篇
  2008年   13篇
  2007年   11篇
  2006年   15篇
  2005年   13篇
  2004年   9篇
  2003年   20篇
  2002年   11篇
  2001年   14篇
  2000年   6篇
  1999年   4篇
  1998年   7篇
  1997年   2篇
  1996年   5篇
  1995年   7篇
  1994年   4篇
  1993年   5篇
  1992年   7篇
  1991年   4篇
  1990年   6篇
  1989年   9篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   5篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1980年   4篇
  1979年   5篇
  1978年   6篇
  1977年   6篇
  1976年   6篇
  1974年   5篇
  1973年   5篇
  1960年   1篇
  1957年   2篇
排序方式: 共有379条查询结果,搜索用时 23 毫秒
101.
Abstract The Red River, Manitoba, is a mud‐dominated, meandering stream that occupies a shallow valley eroded into a clay plain. The valley‐bottom alluvium is the product of incision and lateral migration of river meanders. As revealed by a transect of five boreholes located across the floodplain at each of two successive river meanders, the alluvial deposits range from about 15 to 22 m thick and are composed primarily of silt. Sedimentary structures in the cores are weakly defined and consist mostly of beds of massive silt, thick (>0·4 m) massive silt and disturbed silt. Interlaminated sand and silt, and sand beds form relatively minor deposits, principally within the lower half of the alluvium, and thin beds of medium‐coarse sand and pea gravel can be present locally within the lower metre of the alluvium. The alluvium is interpreted to consist of overbank deposits from 0 to 2–3 m depth, oblique accretion deposits from 2–3 to 8–12 m depth and oblique accretion and/or channel deposits from 8–12 m to the base of the sequence. The massive bedding within the oblique accretion deposits is interpreted to represent the remnants of couplet deposits that were initially composed of interbedded, muddy silt and sand‐sized silt aggregates, as is consistent with the contemporary bank sedimentation. The post‐depositional disintegration and/or compaction of the aggregates has caused the loss of the sand‐sized texture. The disturbed silt beds are interpreted as slump structures caused by large‐scale rotational failures along the convex banks. Overall, the Red River represents a portion of a continuum of muddy, fine‐grained streams; where the alluvium lacks a distinct coarse unit, oblique accretion deposits form a majority of the floodplain, and large‐scale slump features are present.  相似文献   
102.
. The continental flood basalts of the East Greenland volcanic rifted margin were extruded during continental breakup above the ancestral Iceland mantle plume at 55 Ma. Three distinct magma types, the low-Ti, high-Ti and very high-Ti series (LTS, HTS and VHTS respectively), are found intercalated in the ~6-km-thick Plateau Lava sequence. Incompatible trace elements indicate that the LTS are derived from a more depleted mantle source compared to HTS and VHTS. The LTS is characterised by increasing Cu (105 to 248 ppm) and Pd (7 to 24 ppb), constant Cu/Pd ratio (~10,000), and decreasing Ir (1.1 to <0.05 ppb) and Ru (1.8 to <0.3 ppb) concentrations during magmatic differentiation (16 to 7 wt% MgO). The constant Cu/Pd ratio reflects silicate- and chromite-dominated fractionation without concurrent segregation of sulphide. S-undersaturated differentiation is also indicated in the HTS, which also displays increasing Pd (6-16 ppb) and decreasing Ir concentrations (1 to <0.05 ppb) during differentiation, and the Cu/Pd ratios for the entire series average 21,000. However, some HTS samples have elevated Cu/Pd ratios (up to 33,000). Cu/Pd ratios in the HTS do not correlate with MgO, and this is interpreted to reflect varying Cu/Pd ratios of HTS parental magmas rather than S-saturated differentiation. During S-undersaturated differentiation of the LTS and HTS, Pt/Pd ratios decrease from 1.3 to 0.11 and 1.1 to 0.2 respectively, which indicates that Pd is much more incompatible than Pt during S-undersaturated differentiation. The VHTS consists exclusively of highly evolved samples with low MgO (6.6-6.1 wt%) and Pd/Ir ratios 98-228. Here, Cu/Pd ratios increase from 17,500 to 35,000 with decreasing Cr concentrations which indicate that these magmas experienced silicate fractionation with concurrent segregation of sulphide. The LTS represent melting of a depleted source and show high PGE concentrations and constant Cu/Pd ratios during S-undersaturated differentiation. Melting of a normal depleted upper mantle source generates S-saturated melts (MORB), and the depleted LTS source is therefore considered an extraordinary S-poor component within the ancestral Iceland plume. Of the three series, the VHTS contain the largest contribution from enriched mantle portions. The VHTS have similar PGE but much higher Nb concentrations for instance compared to the most evolved LTS and HTS samples, indicating that the enriched source contributes Nb but not PGE.  相似文献   
103.
Making Space for Failure in Geographic Research   总被引:1,自引:0,他引:1  
The idea that field research is an inherently “messy” process has become widely accepted by geographers in recent years. There has thus far been little acknowledgment, however, of the role that failure plays in doing human geography. In this article we push back against this, arguing that failure should be recognized as a central component of what it means to do qualitative geographical field research. This article seeks to use failure proactively and provocatively as a powerful resource to improve research practice and outcomes, reconsidering and giving voice to it as everyday, productive, and necessary to our continual development as researchers and academics. This article argues that there is much value to be found in failure if it is critically examined and shared, and—crucially—if there is a supportive space in which to exchange our experiences of failing in the field.  相似文献   
104.
Effective control of nonpoint source pollution from contaminants transported by runoff requires information about the source areas of surface runoff. Variable source hydrology is widely recognized by hydrologists, yet few methods exist for identifying the saturated areas that generate most runoff in humid regions. The Soil Moisture Routing model is a daily water balance model that simulates the hydrology for watersheds with shallow sloping soils. The model combines elevation, soil, and land use data within the geographic information system GRASS, and predicts the spatial distribution of soil moisture, evapotranspiration, saturation‐excess overland flow (i.e., surface runoff), and interflow throughout a watershed. The model was applied to a 170 hectare watershed in the Catskills region of New York State and observed stream flow hydrographs and soil moisture measurements were compared to model predictions. Stream flow prediction during non‐winter periods generally agreed with measured flow resulting in an average r2 of 0·73, a standard error of 0·01 m3/s, and an average Nash‐Sutcliffe efficiency R2 of 0·62. Soil moisture predictions showed trends similar to observations with errors on the order of the standard error of measurements. The model results were most accurate for non‐winter conditions. The model is currently used for making management decisions for reducing non‐point source pollution from manure spread fields in the Catskill watersheds which supply New York City's drinking water. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
105.
This paper explores the relationship between vadose zone hydrology and geochemical changes in mixed mineralogy carbonate sands from a Bahamian coastal dune of Holocene age. Cores were taken from two sites: at site A, a shallow humic Entisol is developed beneath open scrub vegetation, while at site B a deeper, more organic-rich Inceptisol has formed beneath a mature hardwood coppice. X-ray diffraction analysis reveals significant contrasts in mineralogy both within and between the two sites, with partial stabilization of high-Mg calcite and aragonite, to low-Mg calcite. Stabilization is greater at site B, and is accompanied by a significant increase in total porosity. Diagenetic changes in pore-size distribution have implications for residence times of percolating water, as determined using measurements of moisture retention characteristics using pressure plate apparatus, and hydrological models of unsaturated zone moisture flux. The diagenetically more mature sands from site B have a 50–100 per cent higher moisture retention, although unsaturated hydraulic conductivity is also higher, particularly at greater suctions. The increase in water retention is likely to enhance further rates of mineral-controlled reactions, while development of an organic-rich soil also enhances the geochemical drive for dissolution. Carbonate diagenesis thus appears to be strongly linked to vadose zone hydrology, and the interactions identified here have important consequences for the nature and long-term rates of mineral stabilization. © 1997 by John Wiley & Sons, Ltd.  相似文献   
106.
Wildfire is a natural component of sagebrush (Artemisia spp.) steppe rangelands that induces temporal shifts in plant community physiognomy, ground surface conditions, and erosion rates. Fire alteration of the vegetation structure and ground cover in these ecosystems commonly amplifies soil losses by wind- and water-driven erosion. Much of the fire-related erosion research for sagebrush steppe has focused on either erosion by wind over gentle terrain or water-driven erosion under high-intensity rainfall on complex topography. However, many sagebrush rangelands are geographically positioned in snow-dominated uplands with complex terrain in which runoff and sediment delivery occur primarily in winter months associated with cold-season hydrology. Current understanding is limited regarding fire effects on the interaction of wind- and cold-season hydrologic-driven erosion processes for these ecosystems. In this study, we evaluated fire impacts on vegetation, ground cover, soils, and erosion across spatial scales at a snow-dominated mountainous sagebrush site over a 2-year period post-fire. Vegetation, ground cover, and soil conditions were assessed at various plot scales (8 m2 to 3.42 ha) through standard field measures. Erosion was quantified through a network of silt fences (n = 24) spanning hillslope and side channel or swale areas, ranging from 0.003 to 3.42 ha in size. Sediment delivery at the watershed scale (129 ha) was assessed by suspended sediment samples of streamflow through a drop-box v-notch weir. Wildfire consumed nearly all above-ground live vegetation at the site and resulted in more than 60% bare ground (bare soil, ash, and rock) in the immediate post-fire period. Widespread wind-driven sediment loading of swales was observed over the first month post-fire and extensive snow drifts were formed in these swales each winter season during the study. In the first year, sediment yields from north- and south-facing aspects averaged 0.99–8.62 t ha−1 at the short-hillslope scale (~0.004 ha), 0.02–1.65 t ha−1 at the long-hillslope scale (0.02–0.46 ha), and 0.24–0.71 t ha−1 at the swale scale (0.65–3.42 ha), and watershed scale sediment yield was 2.47 t ha−1. By the second year post fire, foliar cover exceeded 120% across the site, but bare ground remained more than 60%. Sediment yield in the second year was greatly reduced across short- to long-hillslope scales (0.02–0.04 t ha−1), but was similar to first-year measures for swale plots (0.24–0.61 t ha−1) and at the watershed scale (3.05 t ha−1). Nearly all the sediment collected across all spatial scales was delivered during runoff events associated with cold-season hydrologic processes, including rain-on-snow, rain-on-frozen soils, and snowmelt runoff. Approximately 85–99% of annual sediment collected across all silt fence plots each year was from swales. The high levels of sediment delivered across hillslope to watershed scales in this study are attributed to observed preferential loading of fine sediments into swale channels by aeolian processes in the immediate post-fire period and subsequent flushing of these sediments by runoff from cold-season hydrologic processes. Our results suggest that the interaction of aeolian and cold-season hydrologic-driven erosion processes is an important component for consideration in post-fire erosion assessment and prediction and can have profound implications for soil loss from these ecosystems. © 2019 John Wiley & Sons, Ltd.  相似文献   
107.
This paper presents the first chironomid‐inferred mean July air temperature reconstruction for the Late‐glacial in Britain. The reconstruction suggests that the thermal maximum occurred early in the interstadial, with temperatures reaching about 12°C. There was then a gradual downward trend to about 11°C, punctuated by four distinct cold oscillations of varying intensity. At the beginning of the Younger Dryas, mean July temperatures fell to about 7.5°C but gradually increased to about 9°C before a rapid rise at the onset of the Holocene. The chironomid‐inferred temperature curve agrees closely, both in general trends and in detail, with the GRIP ice‐core oxygen‐isotope curve. The reconstructed temperatures are 2–4°C lower than coleopteran‐inferred temperatures but are closer to those inferred from plant macrofossils and glacial equilibrium‐line altitudes during the Younger Dryas. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
108.
We have sampled Upper and Middle Paleolithic sediments in Caldeirão Cave, Portugal, for paleoclimatic analysis. This work involved measuring magnetic susceptibility (MS) on continuous vertical profiles of a series of ∼8 cc sediment samples, and using the MS data as a paleoclimate proxy. Previous work has shown that caves can be ideal recorders of paleoclimatic variations because they are protected environments. Pedogenesis outside the cave during time of cool climate produces sediments with low MS magnitudes, while warmer climates yield higher MS magnitudes. Eroded soils collect in caves in sediment sequences where futher pedogenesis and biological disturbance is minimal. Continuously sampled profiles of those sediments found in an archaeological context then allow paleoclimatic estimates for all archaeological levels. Results of our work here include identification of the last glacial maximum, at ca. 24,000–22,000 B.P. (calibrated), defined by very low MS values found in basal Solutrean levels in the cave. Distinctive ca. 2500 year Neo-glacial cycles, defined by the MS data within the Early Upper Paleolithic and Solutrean, are consistent with published 14C duration estimates for the Upper Paleolithic in Caldeirão Cave. © 1998 John Wiley & Sons, Inc.  相似文献   
109.
The upper Palaeocene–lower Eocene Umm er Radhuma Formation in the subsurface of Qatar is dominated by subtidal carbonate depositional packages overlain by bedded evaporites. In Saudi Arabia and Kuwait, peritidal carbonate depositional sequences with intercalated evaporites and carbonates in Umm er Radhuma have been previously interpreted to have been dolomitized via downward reflux of hypersaline brines. Here, textural, mineralogical and geochemical data from three research cores in Qatar are presented which, in contrast, are more consistent with dolomitization by near-normal marine fluids. Petrographic relationships support a paragenetic sequence whereby dolomitization occurred prior to the formation of all other diagenetic mineral phases, including chert, pyrite, palygorskite, gypsum, calcite and chalcedony, which suggests that dolomitization occurred very early. The dolomites occur as finely crystalline mimetic dolomites, relatively coarse planar-e dolomites, and coarser nonplanar dolomites, all of which are near-stoichiometric (50.3 mol% MgCO3) and well-ordered (0.73). The dolomite stable isotope values (range −2.5‰ to +1‰; mean δ18O = −0.52‰) and trace element concentrations (Sr = 40 to 150 ppm and Na = 100 to 600 ppm) are compatible with dolomitization by near-normal seawater or mesohaline fluids. Comparisons between δ18O values from Umm er Radhuma dolomite and the overlying Rus Formation gypsum further suggest that dolomitization did not occur in fluids related to Rus evaporites. This study provides an example of early dolomitization of evaporite-related carbonates by near-normal seawater rather than by refluxing hypersaline brines from overlying bedded evaporites. Further, it adds to recent work suggesting that dolomitization by near-normal marine fluids in evaporite-associated settings may be more widespread than previously recognized.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号