首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   10篇
  国内免费   1篇
测绘学   3篇
大气科学   16篇
地球物理   59篇
地质学   38篇
海洋学   17篇
天文学   34篇
自然地理   19篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   4篇
  2013年   9篇
  2012年   5篇
  2010年   4篇
  2009年   7篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1989年   2篇
  1988年   5篇
  1986年   3篇
  1984年   3篇
  1983年   8篇
  1982年   2篇
  1981年   6篇
  1980年   5篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1975年   11篇
  1974年   2篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1968年   2篇
  1967年   1篇
  1900年   1篇
排序方式: 共有186条查询结果,搜索用时 31 毫秒
111.
112.
Recent advances in seismic monitoring technology at Canadian mines   总被引:1,自引:0,他引:1  
We provide an overview of the current status of seismic monitoring instrumentation employed in Canadian underground mines. Based on several case studies, we outline how passive seismic monitoring techniques are being used to evaluate fractures and stress conditions associated with ore extraction at depth. It is shown that induced microseismicity allows for the remote monitoring of active fractures, delineating modes of failure with advancing excavation fronts, and identifying variations in principal stress orientations during sequential stages of mining. Advances into the characterization of excavation zone of influence through deformation state analysis and the use of seismic hazard analysis to evaluate the potential for ground instability are also discussed.  相似文献   
113.
A small (360 × 180 m) rhyolitic intrusive body in the lower portion of the Portage Lake Lava Series of Michigan's Keweenaw peninsula was mapped and sampled in detail. The rhyolite is one of a number of similar bodies which make up less than 1% of the total volume of this thick Late-Precambrian plateau basalt pile. The rock is a low-calcium rhyolite with fine-grained homogeneous texture and sparse phenocrysts of plagioclase and quartz. Analyses of selected trace and major elements for 21 samples taken from the body reveal a chemical zonation consisting of a core zone enriched in K, Rb and Ba, and a border zone relatively poor in these elements. Little areal difference is found with respect to other elements tested (Mn, Sr, Zr, Ca, Ti, and Fe). This apparently primary zonation seems to result from the migration of K, Rb and Ba during crystallization of the shallow intrusive. Though zoned, the trace-element chemistry of the Fish Cove body is distinct from that of eight other rhyolites in the Portage Lake Lava Series, and suggests that fingerprinting by trace elements might be a fruitful method for identifying and correlating the sources of numerous rhyolitic pebbles in conglomerates interbedded with the basaltlava flows of the Portage Lake Series.  相似文献   
114.
This case study investigates a stratospheric intrusion event down to the earth’s surface (near sea-level pressure) of the greater area of Athens (23.43°E 37.58°N), which occurred on 9 October 2003 and caused a remarkable increase in surface ozone concentrations not related to photochemical production. This event is among the rare case studies investigating, on the one hand, a deep stratospheric intrusion down to the earth’s surface at near sea-level pressure and, on the other, an event affecting the near surface ozone of a megacity such as Athens. The synoptic situation is described by a deep upper lever trough at 300 and 500 hPa extending over Greece, which is related to a deep tropopause fold as revealed by vertical cross sections of potential vorticity, relative humidity, divergence and vertical velocity. The analysis of potential vorticity at several isentropic levels indicates a hook-shaped streamer of high PV values (greater than 4 pvu at the 315 K isentropic level) over southeast Europe, which coincides with a streamer of dry air as observed from satellite images of water vapor. The aforementioned structure characterizes a textbook case study of stratosphere-to-troposphere transport. The Lagrangian particle dispersion model FLEXPART was used to calculate the trajectories of air particles reaching the receptor site and the fraction of particles with stratospheric origin. It reveals an important direct stratospheric impact within 1 day related to the tropopause fold described in this study with the fraction of stratospheric particles reaching maximum values of 1.9 and 4.5% for threshold values of the dynamical tropopause 2 and 1.5 pvu, respectively. Furthermore, a larger indirect aged stratospheric contribution is also revealed 4 to 5 days prior to the release, related to stratospheric intrusion events at the western Atlantic Ocean, reaching maximum values of 2.5 and 6.9% of particles crossing the 2 and 1.5 pvu potential vorticity surfaces, respectively.  相似文献   
115.
The last 50 years have seen enormous advances in our knowledge and understanding of the stratosphere and mesosphere, which together comprise the middle atmosphere. Beginning from a phase of basic discovery, we have now reached the stage where most observed phenomena can be modelled from first principles with a reasonable degree of fidelity, and where there is an overall theoretical framework which can be tested against measurements and models. This review surveys a number of major surprises in middle atmosphere science over the past 50 years. A phenomenological and historical approach is adopted in each case, leading up to the current literature. Along the way, a common thread emerges: the central role of waves, of various types, in redistributing angular momentum within the atmosphere, and the global nature of the atmospheric response to such redistribution.  相似文献   
116.
Abstract

Nonlinear interactions of deviatoric stress components and the velocity field occur in all dynamic flows where convected elasticity is accounted for. By incorporating a linear Maxwellian constitutive relation (Oldroyd ‘B’ type) into a finite-amplitude convection model we quantify the magnitude of some of the effects of these nonlinear interactions. For viscoelastic flows the relevant nondimensional parameter is the ratio of viscoelastic constitutive relaxation time constant, λ1, to the basic flow process time. The Rayleigh number, Ra, and the nondimensional ratio of λ1 to thermal conduction time, τc, are part of the parameter space investigated. However, shorter basic flow time scales than that for thermal equilibration are of interest since most viscoelastic fluids have relatively small values of λ1 The ratio of λ1 to buoyant time [bcirc], or λ1/[bcirc], is, therefore, a pertinent parameter. Using both lithospheric and aesthenospheric values for λ1, the ratio appropriate to mantle convection is roughly bounded by O(1)[bcirc]>λ1/[bcirc]>O(10?6). Employing these bounds and computing low Rayleigh number time-dependent convective flows in a two-dimensional box, it is demonstrated that viscoelasticity has a negligible influence on quasi-steady heat transport even for λ1/[bcirc]~O(1) For any time-dependent behavior with time scales as short, or shorter than, the buoyant time, [bcirc], viscoelasticity might be important to the local exchange of mechanical energy. The recoverable strain energy in the descending portion of the lithosphere is comparable to the local viscous dissipation. The magnitude of this recoverable component of shear is proportional to λ1/[bcirc].  相似文献   
117.
118.
In glacier‐fed rivers, melting of glacier ice sustains streamflow during the driest times of the year, especially during drought years. Anthropogenic and ecologic systems that rely on this glacial buffering of low flows are vulnerable to glacier recession as temperatures rise. We demonstrate the evolution of glacier melt contribution in watershed hydrology over the course of a 184‐year period from 1916 to 2099 through the application of a coupled hydrological and glacier dynamics model to the Hood River basin in Northwest Oregon, USA. We performed continuous simulations of glaciological processes (mass accumulation and ablation, lateral flow of ice and heat conduction through supra‐glacial debris), which are directly linked with seasonal snow dynamics as well as other key hydrologic processes (e.g. evapotranspiration and subsurface flow). Our simulations show that historically, the contribution of glacier melt to basin water supply was up to 79% at upland water management locations. We also show that supraglacial debris cover on the Hood River glaciers modulates the rate of glacier recession and progression of dry season flow at upland stream locations with debris‐covered glaciers. Our model results indicate that dry season (July to September) discharge sourced from glacier melt started to decline early in the 21st century following glacier recession that started early in the 20th century. Changes in climate over the course of the current century will lead to 14–63% (18–78%) reductions in dry season discharge across the basin for IPCC emission pathway RCP4.5 (RCP8.5). The largest losses will be at upland drainage locations of water diversions that were dominated historically by glacier melt and seasonal snowmelt. The contribution of glacier melt varies greatly not only in space but also in time. It displays a strong decadal scale fluctuations that are super‐imposed on the effects of a long‐term climatic warming trend. This decadal variability results in reversals in trends in glacier melt, which underscore the importance of long‐time series of glacio‐hydrologic analyses for evaluating the hydrological response to glacier recession. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
119.
In the present article we develop the theory of the long period tidal effects in the motion of artificial satellites assuming the variability of elastic parameters of the Earth (Love numbers) across the parallels. The dependence of Love numbers on the longitude produces perturbations of the period of one day or less and hence is neglected in the present theory. In this respect we follow in the footsteps of Kaula (1969). If the deviations ofk 2 andk 3 from pure constants are not taken into consideration, then the perturbations caused by the variability ofk 2 andk 3 across the parallels will be misinterpreted as the perturbations caused byk 4...-terms, and the spurious values ofk 4... will be deduced. It is extremely doubtful, however, that the real effects caused byk 4,k 5,..., are significant enough to be detected. The short period effects with the period of the revolution of the satellite, or less, were removed from the differential equations for the variation of elements of the satellite by the averaging over the orbit of the satellite. These differential equations are in the form convenient for numerical integration over a long interval of time and also suitable for developing the tidal effects into trigonometric series with the arguments ω, Ω of the satellite andl, l′, F, D, Γ of the Moon. The numerical integration can be performed using some simple quadrature formula, without resorting to a predictor-corrector system.  相似文献   
120.
Observations of noctilucent clouds have revealed a surprising coupling between the winter stratosphere and the summer polar mesopause region. In spite of the great distance involved, this inter-hemispheric link has been suggested to be the principal reason for both the year-to-year variability and the hemispheric differences in the frequency of occurrence of these high-altitude clouds. In this study, we investigate the dynamical influence of the winter stratosphere on the summer mesosphere using simulations from the vertically extended version of the Canadian Middle Atmosphere Model (CMAM). We find that for both Northern and Southern Hemispheres, variability in the summer polar mesopause region from one year to another can be traced back to the planetary-wave flux entering the winter stratosphere. The teleconnection pattern is the same for both positive and negative wave-flux anomalies. Using a composite analysis to isolate the events, it is argued that the mechanism for inter-hemispheric coupling is a feedback between summer mesosphere gravity-wave drag (GWD) and zonal wind, which is induced by an anomaly in mesospheric cross-equatorial flow, the latter arising from the anomaly in winter hemisphere GWD induced by the anomaly in stratospheric conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号