首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32104篇
  免费   1649篇
  国内免费   2477篇
测绘学   1483篇
大气科学   3011篇
地球物理   6435篇
地质学   12879篇
海洋学   3109篇
天文学   6103篇
综合类   651篇
自然地理   2559篇
  2023年   271篇
  2022年   542篇
  2021年   698篇
  2020年   619篇
  2019年   710篇
  2018年   951篇
  2017年   930篇
  2016年   1008篇
  2015年   840篇
  2014年   1124篇
  2013年   1742篇
  2012年   1234篇
  2011年   1516篇
  2010年   1327篇
  2009年   1640篇
  2008年   1457篇
  2007年   1396篇
  2006年   1315篇
  2005年   1105篇
  2004年   1059篇
  2003年   966篇
  2002年   893篇
  2001年   783篇
  2000年   729篇
  1999年   660篇
  1998年   660篇
  1997年   657篇
  1996年   498篇
  1995年   474篇
  1994年   432篇
  1993年   372篇
  1992年   361篇
  1991年   300篇
  1990年   332篇
  1989年   298篇
  1988年   250篇
  1987年   320篇
  1986年   262篇
  1985年   349篇
  1984年   387篇
  1983年   376篇
  1982年   337篇
  1981年   315篇
  1980年   319篇
  1979年   289篇
  1978年   311篇
  1977年   264篇
  1976年   267篇
  1975年   275篇
  1973年   238篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Data collected recently by the helioseismic experiments aboard the SOHO spacecraft have allowed the detection of low degree p‐modes with increasingly lower order n. In particular, the GOLF experiment is currently able to unambiguously identify low degree modes with frequencies as low as 1.3 mHz. The detection of p‐modes with very low frequency (i.e., low n), is difficult due to the low signal‐to‐noise ratio in this spectral region and its contamination by solar signals that are not of acoustic origin. To address this problem without using any theoretical a priory, we propose a methodology that relies only on the inversion of observed values to define a spectral window for the expected locations of these low frequency modes. The application of this method to 2920‐day‐long GOLF observations is presented and its results discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
952.
Altimetry measurements over the Ionian region and tide gauge records along the southern Italian coasts have been combined to analyse the negative sea level trend over the Ionian basin in the last decades. The apparent decreasing trend should be better understood as an abrupt sea level drop in 1998 probably linked to changes in the surface circulation in the Ionian basin induced by the Eastern Mediterranean Transient, which changed from anticyclonic to cyclonic about March 1998. From then onwards, a rising rate of 7.9 ± 0.9 mm/year is observed over the basin.  相似文献   
953.
A new method of searching for dark matter in the form of weakly interacting massive particles (WIMP) has been developed with the direct detection of the low energy nuclear recoils observed in a massive target (ultimately many tons) of ultra pure liquid argon at 87 K. A high selectivity for argon recoils is achieved by the simultaneous observation of both the VUV scintillation luminescence and of the electron signal surviving columnar recombination, extracted through the liquid–gas boundary by an electric field.

First physics results from this method are reported, based on a small 2.3 l test chamber filled with natural argon and an accumulated fiducial exposure of about 100 kg day, supporting the future validity of this method with isotopically purified 40Ar and for a much larger unit presently under construction with correspondingly increased sensitivities.  相似文献   

954.
955.
In association with the large solar flare of April 15, 2001, the Chacaltaya neutron monitor observed a 3.6σ enhancement of the counting rate between 13:51 and 14:15 UT. Since the enhancement was observed beginning 11 min before the GLE, solar neutrons must be involved in this enhancement. The integral energy spectrum of solar neutrons can be expressed by a simple power law in energy with the index γ=-3.0±1.0. On the other hand, an integral energy spectrum of solar protons has been obtained in the energy range between 650 MeV and 12 GeV. The spectrum can also be expressed by a power law with the power index γ=-2.75±0.15. The flux of solar protons observed at Chacaltaya (at 12 GeV) was already one order less than the flux of the galactic cosmic rays. It may be the first simultaneous observation of the energy spectra of both high-energy protons and neutrons. Comparing the Yohkoh soft X-ray telescope images with the observed particle time profiles, an interesting picture of the particle acceleration mechanism has been deduced.  相似文献   
956.
Syrtis Major Planum is a volcanic plain dominated by lava flows. High resolution stereo camera (HRSC) images of the northern Syrtis Major region display erosional features such as grooves, teardrop-shaped islands and valleys. These landforms are characteristics of outflow channels seen on Mars, therefore implying that a flood event took place in this region. The flow of 100 km long and a few kilometer wide followed the local slopes in most locations. Maximum flood discharges estimated from images and topography vary from about 0.3×106 to 8×106 m3/s, and therefore are in the range of terrestrial mega-floods in the Scablands or Lake Bonneville. In North Syrtis Major, the relationships with surrounding lava flows and the timing of the flood coeval to Syrtis Major volcanic activity suggest that it could be related to the subsurface water discharge mobilized by the volcanic activity. The proximity of Noachian age basement rocks 20 km away from the flood and below lava flows might have played a role in its formation and water presence.  相似文献   
957.
Using NSO/Kitt Peak synoptic charts from 1975 to 2003, we group the main solar magnetic fields into two categories: one for active regions (ARs) and the other for extended bipolar regions (EBRs). Comparing them, we find that there exist three typical characteristics in the variability of EBRs: First, there exists a correlation between ARs and EBRs. The phase of EBR flux has a delay nearly two CRs. Second, we find that the EBR flux has two prominent periods at 1.79 years and 3.21 years. The 1.79-year period seems to only belong to large-scale magnetic features. Lastly, the North – South asymmetry of EBR flux is not very significant on a time scale of one solar cycle. However, during solar maxima, its dominance is found to shift from one hemisphere to the other.  相似文献   
958.
The DynaMICCS mission is designed to probe and understand the dynamics of crucial regions of the Sun that determine solar variability, including the previously unexplored inner core, the radiative/convective zone interface layers, the photosphere/chromosphere layers and the low corona. The mission delivers data and knowledge that no other known mission provides for understanding space weather and space climate and for advancing stellar physics (internal dynamics) and fundamental physics (neutrino properties, atomic physics, gravitational moments...). The science objectives are achieved using Doppler and magnetic measurements of the solar surface, helioseismic and coronographic measurements, solar irradiance at different wavelengths and in-situ measurements of plasma/energetic particles/magnetic fields. The DynaMICCS payload uses an original concept studied by Thalès Alenia Space in the framework of the CNES call for formation flying missions: an external occultation of the solar light is obtained by putting an occulter spacecraft 150 m (or more) in front of a second spacecraft. The occulter spacecraft, a LEO platform of the mini sat class, e.g. PROTEUS, type carries the helioseismic and irradiance instruments and the formation flying technologies. The latter spacecraft of the same type carries a visible and infrared coronagraph for a unique observation of the solar corona and instrumentation for the study of the solar wind and imagers. This mission must guarantee long (one 11-year solar cycle) and continuous observations (duty cycle > 94%) of signals that can be very weak (the gravity mode detection supposes the measurement of velocity smaller than 1 mm/s). This assumes no interruption in observation and very stable thermal conditions. The preferred orbit therefore is the L1 orbit, which fits these requirements very well and is also an attractive environment for the spacecraft due to its low radiation and low perturbation (solar pressure) environment. This mission is secured by instrumental R and D activities during the present and coming years. Some prototypes of different instruments are already built (GOLFNG, SDM) and the performances will be checked before launch on the ground or in space through planned missions of CNES and PROBA ESA missions (PICARD, LYRA, maybe ASPIICS).  相似文献   
959.
960.
We perform a study of the spatial and kinematical distribution of young open clusters in the solar neighbourhood, discerning between bound clusters and transient stellar condensations within our sample. Then, we discriminate between Gould Belt (GB) and local Galactic disc (LGD) members, using our previous estimate of the structural parameters of both systems obtained from a sample of O-B6 Hipparcos stars. Single membership probabilities of the clusters are also calculated in the separation process. Using this classified sample, we analyse the spatial structure and the kinematic behaviour of the cluster system in the GB. The two star formation regions that dominate and give the GB its characteristic-inclined shape show a striking difference in their content of star clusters: while Ori OB1 is richly populated by open clusters, not a single one can be found within the boundaries of Sco OB2. This is mirrored in the velocity space, translating again into an abundance of clusters in the region of the kinematic space populated by the members of Ori OB1, and a marginal number of them associated with Sco OB2. We interpret all these differences by characterizing the Orion region as a cluster complex typically surrounded by a stellar halo, and the Sco-Cen region as an OB association in the outskirts of the complex. In the light of these results, we study the nature of the GB with respect to the optical segment of the Orion Arm, and we propose that the different content of star clusters, the different heights over the Galactic plane and the different residual velocities of Ori OB1 and Sco OB2 can be explained in terms of their relative position to the density maximum of the Local Arm in the solar neighbourhood. Although morphologically intriguing, the GB appears to be the result of our local and biased view of a larger star cluster complex in the Local Arm, that could be explained by the internal dynamics of the Galactic disc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号