The temperature distribution at depth is a key variable when assessing the potential of a supercritical geothermal resource as well as a conventional geothermal resource. Data-driven estimation by a machine-learning approach is a promising way to estimate temperature distributions at depth in geothermal fields. In this study, we developed two methodologies—one based on Bayesian estimation and the other on neural networks—to estimate temperature distributions in geothermal fields. These methodologies can be used to supplement existing temperature logs, by estimating temperature distributions in unexplored regions of the subsurface, based on electrical resistivity data, observed geological/mineralogical boundaries, and microseismic observations. We evaluated the accuracy and characteristics of these methodologies using a numerical model of the Kakkonda geothermal field, Japan, where a temperature above 500 °C was observed below a depth of about 3.7 km. When using geological and geophysical knowledge as prior information for the machine learning methods, the results demonstrate that the approaches can provide subsurface temperature estimates that are consistent with the temperature distribution given by the numerical model. Using a numerical model as a benchmark helps to understand the characteristics of the machine learning approaches and may help to identify ways of improving these methods.
Summary. Dynamical rupture process on the fault is investigated in a quasi-three-dimensional faulting model with non-uniform distributions of static frictions or the fracture strength under a finite shearing pre-stress. The displacement and stress time functions on the fault are obtained by solving numerically the equations of motion with a finite stress—fracture criterion, using the finite difference method. If static frictions are homogeneous or weakly non-uniform, the rupture propagates nearly elliptically with a velocity close to that of P waves along the direction of pre-stress and with a nearly S wave velocity in the direction perpendicular to it. The rise time of the source function and the final displacements are larger around the centre of the fault. In the case when the static frictions are heavily non-uniform and depend on the location, the rupture propagation becomes quite irregular with appreciably decreased velocities, indicating remarkable stick-slip phenomena. In some cases, there remain unruptured regions where fault slip does not take place, and high stresses remain concentrated up to the final stage. These regions could be the source of aftershocks at a next stage. The stick—slip faulting and irregular rupture propagation radiate high-frequency seismic waves, and the near-field spectral amplitudes tend to show an inversely linear frequency dependence over high frequencies for heavily non-uniform frictional faults. 相似文献
Archeological evidence of Pacific salmon in Hokkaido is reviewed and compared with results from western North America. Salmon remains have been found at 24 sites in Hokkaido from the Early Jomon Period to the Ainu Period (6000–100 years ago). Fish remains at three archeological sites in the Kushiro River basin indicated that Pacific salmon (Oncorhynchus spp.) were distributed and utilized from 6000 years ago. The present Kushiro Wetland was formerly covered with seawater and called the Paleo Kushiro Bay 5000–6000 years ago. Based on the molluscan fossil fauna, seawater temperature at Paleo Kushiro Bay was about 5°C warmer than at present. Warmer conditions for salmon in Kushiro 5000–6000 years ago corresponded with the poor conditions for salmon in the Columbia River basin 6000–7000 years ago. If the future global warming is similar to the conditions that prevailed 5000–6000 years ago, the southern limit of salmon distribution will shift northwards and the salmon production will decrease. However, they will not disappear from either Hokkaido or southwestern North America. 相似文献
Ochre is an unwanted waste product that accumulates in wetlands and streams draining abandoned coal and metal mines. A potential commercial use for ochre is to remediate As contaminated soil. Arsenic contaminated soil (605 mg kg−1) was mixed with different ochres (A, B and C) in a mass ratio of 1:1 and shaken in 20 mL of deionised water. After 72 h As concentration in solution was ca. 500 μg kg−1 in the control and 1–2.5 μg kg−1 in the ochre treated experiments. In a second experiment soil:ochre mixtures of 0.05–1:1 were shaken in 20 mL of deionised water for 24 h. For Ochres A and C, as solution concentration was reduced to ca. 1 μg kg−1 by 0.2–1:1 ochre:soil mixtures. For Ochre B, as concentration only reached ca. 1 μg kg−1 in the 1:1 ochre:soil mix. Sorption of As was best modelled by a Freundlich isotherm using As sorption per mass of goethite in the ochre (log K = 1.64, n = 0.79, R2 = 0.76, p 0.001). Efficiency of ochre in removing As from solution increased with increasing total Fe, goethite, citrate dithionite extractable Fe and surface area. 相似文献
Temporal variations in temperature and salinity observed in 2004 were investigated on a short time scale in the Tsushima Strait.
The data were obtained by long-term in situ measurements at Mitsushima and Futaoi Island using an instrument equipped with
a piston-type wiper to avoid biofouling. In addition, the temperature and salinity values of the surface layer obtained by
a commercial ferryboat between Hakata and Busan were used to investigate their spatiotemporal variations. Temperature and
salinity variations with a time scale of several days had a negative correlation in the summer. This evidence suggests that
a warm and less saline water mass, which is considered to be mainly the Changjiang Diluted Water (CDW), flowed intermittently
through the Tsushima Strait in summer. In late July 2004, a large low-salinity water mass was detected in the Tsushima Strait.
At that time, the freshwater transport through the Tsushima Strait transiently reached about 12 × 104 m3s−1, which is estimated from observed acoustic Doppler current profiler (ADCP) data along a ferryboat line and inferred salinity
profiles. This estimated value is more than double the maximum of the climatological monthly mean of the Changjiang discharge.
Furthermore, salinity and surface current data obtained by high frequency ocean radar (HF radar) indicate that water properties
at Mitsushima may occasionally represent part of the water flowing through the western channel via a countercurrent, although
Mitsushima is geographically located in the eastern channel. 相似文献
An ultraviolet-excess galaxy Markarian 313 (NGC 7465), which consists of a multiple system with NGC 7463 and NGC 7464, is studied using the low- and high-resolution optical spectrum. Emission lines of H, H, [NII], and [OIII] have conspicuous blueward asymmetrical wings or blue slanted profiles in the spectrum of the nuclear region of the galaxy. The width of these emission lines is as broad as 600 km s–1 at the zero-intensity level, and the velocity difference between the narrow and broad components is estimated at around 80 km s–1 from the two-component Gaussian profile fitting. This fact could be an evidence of a large-scale dynamical motion in or surrounding the nuclear region of the galaxy, implying that it bears an intermediate characteristic between a Seyfert and a starburst galaxy. 相似文献
The development of mudwaves on the levees of the modern Toyama deep‐sea channel has been studied using gravity core samples combined with 3·5‐kHz echosounder data and airgun seismic reflection profiles. The mudwaves have developed on the overbank flanks of a clockwise bend of the channel in the Yamato Basin, Japan Sea, and the mudwave field covers an area of 4000 km2. Mudwave lengths range from 0·2 to 3·6 km and heights vary from 2 to 44 m, and the pattern of mudwave aggradation indicates an upslope migration direction. Sediment cores show that the mudwaves consist of an alternation of fine‐grained turbidites and hemipelagites whereas contourites are absent. Core samples demonstrate that the sedimentation rate ranged from 10 to 14 cm ka?1 on the lee sides to 17–40 cm ka?1 on the stoss sides. A layer‐by‐layer correlation of the deposits across the mudwaves shows that the individual turbidite beds are up to 20 times thicker on the stoss side than on the lee side, whereas hemipelagite thicknesses are uniform. This differential accretion of turbidites is thought to have resulted in the pattern of upcurrent climbing mudwave crests, which supports the notion that the mudwaves have been formed by spillover turbidity currents. The mudwaves are interpreted to have been instigated by pre‐existing large sand dunes that are up to 30 m thick and were created by high‐velocity (10°ms?1), thick (c. 500 m) turbidity currents spilling over the channel banks at the time of the maximum uplift of the Northern Japan Alps during the latest Pliocene to Early Pleistocene. Draping of the dunes by the subsequent, lower‐velocity (10?1ms?1), mud‐laden turbidity currents is thought to have resulted in the formation of the accretionary mudwaves and the pattern of upflow climbing. The dune stoss slopes are argued to have acted as obstacles to the flow, causing localized loss of flow strength and leading to differential draping by the muddy turbidites, with greater accretion occurring on the stoss side than on the lee slope. The two overbank flanks of the clockwise channel bend show some interesting differences in mudwave development. The mudwaves have a mean height of 9·8 m on the outer‐bank levee and 6·2 m on the inner bank. The turbidites accreted on the stoss sides of the mudwaves are 4–6 times thicker on the outer‐bank levee than their counterparts on the inner‐bank levee. These differences are attributed to the greater flow volume (thickness) and sediment flux of the outer‐bank spillover flow due to the more intense stripping of the turbidity currents at the outer bank of the channel bend. Differential development of mudwave fields may therefore be a useful indicator in the reconstruction of deep‐sea channels and their flow hydraulics. 相似文献