首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   9篇
  国内免费   1篇
测绘学   5篇
大气科学   18篇
地球物理   19篇
地质学   61篇
海洋学   9篇
天文学   23篇
自然地理   6篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   5篇
  2014年   5篇
  2013年   6篇
  2012年   4篇
  2011年   10篇
  2010年   6篇
  2009年   8篇
  2008年   10篇
  2007年   8篇
  2006年   3篇
  2005年   8篇
  2004年   11篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1997年   2篇
  1996年   3篇
  1994年   3篇
  1991年   2篇
  1990年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有141条查询结果,搜索用时 93 毫秒
91.
Future climate evolution is of primary importance for the societal, economical, political orientations and decision-making. It explains the increasing use of climate projections as input for quantitative impact studies, assessing vulnerability and defining adaptation strategies in different sectors. Here we analyse 17 national and representative use cases so as to identify the diversity of the demand for climate information depending on user profiles as well as the best practices, methods and tools that are needed to answer the different requests. A particular emphasis is put on the workflow that allows to translate climate data into suitable impact data, the way to deal with the different sources of uncertainty and to provide a suited product to users. We identified three complementary tools to close the gap between climate scientists and user needs: an efficient interface between users and providers; an optimized methodology to handle user requests and a portal to facilitate access to data and elaborated products. We detail in the paper how these three tools can limit the intervention of experts, educate users, and lead to the production of useful information. This work provides the basis on which the ENES (European Network for Earth System Modelling) Portal Interface for the Climate Impact Communities is built.  相似文献   
92.
Abstract– The insoluble carbonaceous matter from 12 chondrites (CI, CM, CO, CV, EH, and UOC), was characterized by high resolution transmission electron microscopy (HRTEM). Besides ubiquitous nanoglobules, the insoluble organic matter from petrologic type 1 and 2 chondrites and Semarkona (LL 3.0) is composed of a highly disordered polyaromatic component. No structural differences were observed between these IOMs, in agreement with the limited thermal metamorphism they all experienced. In chondrites of petrologic type >3.0, the evolution of the IOM is controlled by the extent of thermal metamorphism. The polyaromatic layers, shorter than 1 nm in petrologic type ≤3.0 chondrites, grow up to sizes between 5 and 10 nm in petrologic type >3.6 chondrites, contributing to the increase of the degree of structural order. In addition, we find rare, but ubiquitous onion‐like carbons, which may be the product of nanodiamond graphitization. The insoluble carbonaceous matter of the enstatite chondrite Sahara 97096 (EH 3) is different from the other meteorites studied here. It is more heterogeneous and displays a high abundance of graphitized particles. This may be the result of a mixture between (1) the disordered carbon located in the matrix, and (2) catalytic graphitized phases associated with metal, potentially originating from partial melting events. The structural and nanostructural evolution are similar in all IOMs. This suggests that the structure of the accreted precursors and the parent body conditions of their secondary thermal modifications (temperature, duration, and pressure) were similar. The limited degree of organization of the most metamorphosed IOMs compared with terrestrial rocks submitted to similar temperature suggests that the conditions are not favorable to graphitization processes, due to the chemical nature of the precursor or the lack of confinement pressure.  相似文献   
93.
Pyrolysis with and without tetramethylammonium hydroxide (TMAH), vacuum pyrolysis, and solid state 15N nuclear magnetic resonance (NMR) were used to examine the macromolecular insoluble organic matter (IOM) from the Orgueil and Murchison meteorites. Conventional pyrolysis reveals a set of poorly functionalized aromatic compounds, ranging from one to four rings and with random methyl substitutions. These compounds are in agreement with spectroscopic and pyrolytic results previously reported. For the first time, TMAH thermochemolysis was used to study extraterrestrial material. The detection of aromatics bearing methyl esters and methoxy groups reveals the occurrence of ester and ether bridges between aromatic units in the macromolecular network.No nitrogen-containing compounds were detected with TMAH thermochemolysis, although they are a common feature in terrestrial samples. Along with vacuum pyrolysis results, thermochemolysis shows that nitrogen is probably sequestered in condensed structures like heterocyclic aromatic rings, unlike oxygen, which is mainly located within linkages between aromatic units. This is confirmed by solid state 15N NMR performed on IOM from Orgueil, showing that nitrogen is present in pyrrole, indole, and carbazole moieties.These data show that amino acids are neither derived from the hydrolysis of IOM nor from a common precursor. In order to reconcile the literature isotopic data and the present molecular results, it is proposed that aldehydes and ketones (1) originated during irradiation of ice in space and (2) were then mobilized during the planetesimal hydrothermalism, yielding the formation of amino acids. If correct, prebiotic molecules are the products of the subsurface chemistry of planetesimals and are thus undetectable through astronomical probes.  相似文献   
94.
95.
The present paper is devoted to the interpretation of linear polarization data obtained in 14 quiescent prominences with the Pic-du-Midi coronagraph-polarimeter by J. L. Leroy, in the two lines Hei D3 andH quasi-simultaneously. The linear polarization of the lines is due to scattering of the anisotropic photospheric radiation, modified by the Hanle effect due to the local magnetic field. The interpretation of the polarization data in the two lines is able to provide the 3 components of the magnetic field vector, and one extra parameter, namely the electron density, because the linear polarization of H is also sensitive to the depolarizing effect of collisions with the electrons and protons of the medium. Moreover, by using two lines with different optical thicknesses, namely Hei D3, which is optically thin, and H, which is optically thick ( = 1), it is possible to solve the fundamental ambiguity, each line providing two field vector solutions that are symmetrical in direction with respect to the line of sight in the case of the optically thin line, and which have a different symmetry in the case of the optically thick line.It is then possible to determine without ambiguity the polarity of the prominence magnetic field with respect to that of the photospheric field: 12 prominences are found to be Inverse polarity prominences, whereas 2 prominences are found to be Normal polarity prominences. It must be noticed that in 12 of the 14 cases, the line-of-sight component of the magnetic field vector has a Normal polarity (to the extent that the notion of polarity of a vector component is meaningful; no polarity can be derived in the 2 remaining cases); this may explain the controversy between the results obtained with methods based on the Hanle effect with results obtained through the Zeeman effect. A dip of the magnetic field lines across the prominence has been assumed, to which the optically thick H line is sensitive, and the optically thin Hei D3 line is insensitive.For the Inverse prominences, the average field strength is 7.5±1.2 G, the average angle,, between the field vector and the prominence long axis is 36° ± 15°, the average angle, , between the outgoing field lines and the solar surface at the prominence boundary is 29° ± 20°, and the average electron density is 2.1 × 1010 ± 0.7 × 1010 cm–3. For the Normal prominences, the average field strength is 13.2±2.0 G, the average angle,, between the field vector and the prominence long axis is 53° ± 15°, the average angle, , between the outgoing field lines and the solar surface at the prominence boundary is 0° ± 20° (horizontal field), and the average electron density is 8.7 × 109 ± 3.0 × 109 cm–3.  相似文献   
96.
97.
98.
The coupled spatial investigation of the geometrical and geochemical properties of a chalk karstic aquifer provides information on the degree to which geologic structure controls aquifer functioning and groundwater quality. Major ion concentrations in the chalk aquifer of the Haute-Normandie region (France) were measured at a high spatial resolution (more than 100 sampling sites over a 6000 km2 area) and mapped. The first observation is a continuity of the geochemical properties, in spite of the karstic properties of the aquifer principal components analysis of geochemical maps revealed two types of spatial distributions: ions with an autochthonous origin (Ca2+, HCO3), and ions with a principally allochthonous origin (Cl, Na+, , ). Mg2+ was categorised as both autochthonous (chalk dissolution) and allochthonous (brought in by infiltration of Tertiary deposits). To better understand the spatial distribution of the geochemistry, the aquifer geochemistry was compared to the physical properties of the aquifer, in particular aquifer thickness (representing aquifer geometry) and piezometric level (representing aquifer flow). Use of spatial correlation between the geochemical and the geometrical properties provided insight regarding the directional structure of the data and give evidence of directional relations between geochemical and geometrical properties. The degree of mineralisation (principally composed of Ca2+ and ions) increased along the direction of flow, corresponding to an increase in chalk dissolution rate along the flowpath. The steepest mineralisation gradients were related to an increase in the Mg/Ca ratio, evidence of longer residence times and corresponding to zones where aquifer flow capacity is limited because of a decrease of the thickness of the flow section (anticlines or faults). These results highlight the dominant role played by the geometry and the structural context in controlling aquifer geochemistry.  相似文献   
99.
In order to understand various aspects of radar wave propagation, a survey of electromagnetic wave behaviour relative to the geological characteristics of the formations prospected was undertaken. The sites chosen for the tests were a granite quarry and an underground schist working. By investigating an electrically resistive isotropic site and a conductive anisotropic site, it was demonstrated that non-conventional use of a radar system (antennae raised, various orientations of the transmitter/receiver, etc.) could improve data quality, and could allow information other than reflector depth to be collected (volume scattering intensity, isotropy, etc.). By studying wave propagation velocities, we underlined the difficulties encountered in establishing a velocity versus depth law, despite recourse to seismic data processing, such as NMO corrections. The results of field experiments, complemented by laboratory measurements of dielectric permittivities, clearly showed anisotropy effects: in the case of a path that is perpendicular to the schistosity plane, an electromagnetic wave propagates more slowly and is more attenuated than a wave parallel to the schistosity plane.  相似文献   
100.
Based on a previous study for temperature, a new method for the calculation of non-stationary return levels for extreme rainfall is described and applied to Extremadura, a region of southwestern Spain, using the peaks-over-threshold approach. Both all-days and rainy-days-only datasets were considered and the 20-year return levels expected in 2020 were estimated taking different trends into account: first, for all days, considering a time-dependent threshold and the trend in the scale parameter of the generalized Pareto distribution; and second, for rainy days only, considering how the mean, variance, and number of rainy days evolve. Generally, the changes in mean, variance and number of rainy days can explain the observed trends in extremes, and their extrapolation gives more robust estimations. The results point to a decrease of future return levels in 2020 for spring and winter, but an increase for autumn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号