首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
大气科学   34篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1996年   2篇
  1994年   1篇
  1991年   1篇
  1987年   2篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
21.
We present an analysis of data from a nearly 1-year measurement campaign performed at Høvsøre, Denmark, a coastal farmland area where the terrain is flat. Within the easterly sector upstream of the site, the terrain is nearly homogenous. This topography and conditions provide a good basis for the analysis of vertical wind-speed profiles under a wide range of atmospheric stability, turbulence, and forcing conditions. One of the objectives of the campaign was to serve as a benchmark for flow over flat terrain models. The observations consist of combined wind lidar and sonic anemometer measurements at a meteorological mast. The sonic measurements cover the first 100 m and the wind lidar measures above 100 m every 50 m in the vertical. Results of the analysis of observations of the horizontal wind-speed components in the range 10–1200 m and surface turbulence fluxes are illustrated in detail, combined with forcing conditions derived from mesoscale model simulations. Ten different cases are presented. The observed wind profiles approach well the simulated gradient and geostrophic winds close to the simulated boundary-layer height during both barotropic and baroclinic conditions, respectively, except for a low-level jet case, as expected. The simulated winds are also presented for completeness and show good agreement with the measurements, generally underpredicting the turning of the wind in both barotropic and baroclinic cases.  相似文献   
22.
An analysis tool for the study of wind speed profiles over the water has been developed. The profiles are analysed using a modified dimensionless wind speed and dimensionless height, assuming that the sea surface roughness can be predicted by Charnock’s roughness length model. In this form, the roughness dependency on wind speed is extracted and the variations on the wind profile are due solely to atmospheric stability. The use of the Charnock’s non-dimensional wind profile is illustrated using data collected from a meteorological mast installed in the Danish North Sea. The best fit with the observed mean non-dimensional wind profile under neutral atmospheric conditions is found using a value of 1.2 × 10−2 for Charnock’s parameter. The stability correction on the neutral wind profile suggested by the Businger-Dyer relations was found to perform well over the sea.  相似文献   
23.
We present measurements from 2006 of the marine wind speed profile at a site located 18 km from the west coast of Denmark in the North Sea. Measurements from mast-mounted cup anemometers up to a height of 45 m are extended to 161 m using LiDAR observations. Atmospheric turbulent flux measurements performed in 2004 with a sonic anemometer are compared to a bulk Richardson number formulation of the atmospheric stability. This is used to classify the LiDAR/cup wind speed profiles into atmospheric stability classes. The observations are compared to a simplified model for the wind speed profile that accounts for the effect of the boundary-layer height. For unstable and neutral atmospheric conditions the boundary-layer height could be neglected, whereas for stable conditions it is comparable to the measuring heights and therefore essential to include. It is interesting to note that, although it is derived from a different physical approach, the simplified wind speed profile conforms to the traditional expressions of the surface layer when the effect of the boundary-layer height is neglected.  相似文献   
24.
Applied model for the growth of the daytime mixed layer   总被引:5,自引:2,他引:5  
A slab model is proposed for developing the height of the mixed layer capped by stable air aloft. The model equations are closed by relating the consumption of energy (potential and kinetic) at the top of the mixed layer to the production of convective and mechanical turbulent kinetic energy within the mixed layer. By assuming that the temperature difference at the top of the mixed layer instantaneously adjusts to the actual meteorological conditions without regard to the initial temperature difference that prevailed, the model is reduced to a single differential equation which easily can be solved numerically. When the mixed layer is shallow or the atmosphere nearly neutrally stratified, the growth is controlled mainly by mechanical turbulence. When the layer is deep, its growth is controlled mainly by convective turbulence. The model is applied on a data set of the evolution of the height of the mixed layer in the morning hours, when both mechanical and convective turbulence contribute to the growth process. Realistic mixed-layer developments are obtained.  相似文献   
25.
An investigation of the long-term variability of wind profiles for wind energy applications is presented. The observations consists of wind measurements obtained from a ground-based wind lidar at heights between 100 and 600 m, in combination with measurements from tall meteorological towers at a flat rural coastal site in western Denmark and at an inland suburban area near Hamburg in Germany. Simulations with the weather research and forecasting numerical model were carried out in both forecast and analysis configurations. The scatter between measured and modelled wind speeds expressed by the root-mean-square error was about 10 % lower for the analysis compared to the forecast simulations. At the rural coastal site, the observed mean wind speeds above 60 m were underestimated by both the analysis and forecast model runs. For the inland suburban area, the mean wind speed is overestimated by both types of the simulations below 500 m. When studying the wind-speed variability with the Weibull distribution, the shape parameter was always underestimated by the forecast compared to both analysis simulations and measurements. At the rural coastal site although the measured and modelled Weibull distributions are different their variances are nearly the same. It is suggested to use the shape parameter for climatological mesoscale model evaluation. Based on the new measurements, a parametrization of the shape parameter for practical applications is suggested.  相似文献   
26.
A range of large-eddy simulations, with differing free atmosphere stratification and zero or slightly positive surface heat flux, is investigated to improve understanding of the neutral and near-neutral, inversion-capped, horizontally homogeneous, barotropic atmospheric boundary layer with emphasis on the upper region. We find that an adjustment time of at least 16 h is needed for the simulated flow to reach a quasi-steady state. The boundary layer continues to grow, but at a slow rate that changes little after 8 h of simulation time. A common feature of the neutral simulations is the development of a super-geostrophic jet near the top of the boundary layer. The analytical wind-shear models included do not account for such a jet, and the best agreement with simulated wind shear is seen in cases with weak stratification above the boundary layer. Increasing the surface heat flux decreases the magnitude and vertical extent of the jet and leads to better agreement between analytical and simulated wind-speed profiles. Over a range of different inversion strengths and surface heat fluxes, we also find good agreement between the performed simulations and models of the equilibrium boundary-layer height, and of the budget of turbulent kinetic energy integrated across the boundary layer.  相似文献   
27.
Summary The Basel UrBan Boundary Layer Experiment (BUBBLE) was a year-long experimental effort to investigate in detail the boundary layer structure in the City of Basel, Switzerland. At several sites over different surface types (urban, sub-urban and rural reference) towers up to at least twice the main obstacle height provided turbulence observations at many levels. In addition, a Wind Profiler and a Lidar near the city center were profiling the entire lower troposphere. During an intensive observation period (IOP) of one month duration, several sub-studies on street canyon energetics and satellite ground truth, as well as on urban turbulence and profiling (sodar, RASS, tethered balloon) were performed. Also tracer experiments with near-roof-level release and sampling were performed. In parallel to the experimental activities within BUBBLE, a meso-scale numerical atmospheric model, which contains a surface exchange parameterization, especially designed for urban areas was evaluated and further developed. Finally, the area of the full-scale tracer experiment which also contains several sites of other special projects during the IOP (street canyon energetics, satellite ground truth) is modeled using a very detailed physical scale-model in a wind tunnel. In the present paper details of all these activities are presented together with first results.  相似文献   
28.
29.
30.
This paper provides an overview of some aspects of atmospheric boundary-layer dispersion processes over homogeneous and complex terrain. Special emphasis is placed on a discussion of the boundarylayer scaling regimes over homogeneous terrain and the characteristics of the dispersion processes associated with each of these regimes. The paper points out that vertical concentration profiles usually deviate substantially from a Gaussian distribution. The mean flow and turbulence over a low hill is dealt with, and in the inner layer the turbulence levels are increased due to the mean flow speed-up. In the outer layer the turbulence is modified by the rapid distortion effect. In a middle layer the turbulence is reduced due to the effect of a hill-induced streamline curvature. The paper concludes that the flow perturbations introduced by large-scale hills and valleys invalidate the use of simple approximations for describing atmospheric dispersion processes, and that it is necessary to utilize the full set of equations of motion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号