首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   1篇
  国内免费   1篇
测绘学   3篇
大气科学   17篇
地球物理   19篇
地质学   57篇
天文学   6篇
自然地理   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   5篇
  2017年   5篇
  2016年   5篇
  2015年   8篇
  2014年   13篇
  2013年   8篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   7篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1990年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1970年   1篇
  1969年   3篇
  1967年   1篇
排序方式: 共有104条查询结果,搜索用时 31 毫秒
91.
Analysis of a quality-controlled database of Gulf Stream warm-core rings (WCRs) between 75° and 50°W during 1978–1999 demonstrates a significant correlation between WCR occurrences and variations in large-scale atmospheric forcing related to the state of the North Atlantic Oscillation (NAO). The mechanisms for linking the NAO with the rate of WCR occurrences are two-fold: (1) the influence of the NAO on Gulf Stream (GS) position, which could affect the interaction of the Gulf Stream with the New England Seamounts chain and thus allow for a higher/lower number of WCR occurrences; (2) the NAO-induced eddy kinetic energy (EKE) variability in the Gulf Stream region (GSR), which is indicative of the baroclinic instability processes necessary for WCR formation. Variability in GS movement is studied by analyzing annual mean positions of the Gulf Stream North Wall obtained from satellite-derived sea surface temperature (SST) frontal charts. Response of GSR EKE to fluctuations in the state of the NAO is examined with a numerical simulation of the North Atlantic basin from 1980–1999. The North Atlantic basin is simulated using a 1/6°-resolution eddy-resolving Regional Ocean Modeling System (ROMS) model that spins up with Southampton Oceanography Center (SOC) ocean-atmosphere atlas-derived atmospheric forcing fields. Model-derived EKE estimates are observed to be in good agreement with TOPEX/Poseidon altimeter-based EKE estimates as well as with results from other modeling studies for the North Atlantic basin. We suggest that lateral movement of the GS may not be the primary mechanism causing variation in the rate of WCR occurrences, because GS position is observed to respond at a lag of one year, whereas annual rates of WCR occurrences respond at 0-year lag to the NAO. Based on results from numerical simulations of the North Atlantic basin, adjustment to NAO-induced wind forcing is seen to impact the GSR EKE intensity and possibly the related baroclinic instability structure of the GS at 0-year lag. These results suggest that NAO-induced interannual variability in GSR EKE is the most likely mechanism affecting WCR occurrences. Numerical simulations show that high (low) phases in the state of the NAO exhibit higher (lower) EKE in the GSR, providing a greater (lesser) source of baroclinic instability to the GS front, possibly resulting in higher (lower) occurrences of WCRs.  相似文献   
92.
The fast growth in population and expansion of urban built area has led to the transformation of the natural landscape into impervious surfaces. Remote sensing-based estimate of impervious surface area (ISA) has emerged as an important indicator for the assessment of water resources depletion in urban areas and developed a correlation between land-use change and their potential impact on urban hydrology. In the present work, a remote sensing-based Impervious Surface Area (ISA) was carried out for New Okhla Industrial Development Authority (NOIDA) city, one of the fastest growing cities in National Capital Region (NCR) of India. The impervious surface area (ISA) of NOIDA was calculated for the years 2001, 2007 and 2014 using multi-temporal LANDSAT thermal data by applying linear spectral mixing analysis (LSMA) techniques to monitor the growth rate of impervious surface. The results observed by analysis of multi-temporal satellite images show an extreme temporal change in the growth of ISA in the city. The ISA observed for the year 2001 is 28 sq.km; in 2007, its increase was 48 sq.km and was 132 in 2014. The results were observed from this work through the use of satellite data which is very important for water resource management, planning and prediction of ISA impact on hydrology.  相似文献   
93.
94.
Characterizing friction is a fundamentally important aspect of modeling the seismic response of a body resting on any mechanical interface. In the context of rigid bodies mounted within building structures, the numerous types of elements and interfaces encountered in practice require specific characterization before any modeling assumptions can be undertaken. To this end, in this paper, the specific problem of characterizing the frictional behavior for a variety of small equipment types typically found in Biological and Chemical Science laboratories is studied using two different methods of testing. A simple approach is presented to determine the instantaneous coefficients of friction considering inertial effects. Resulting coefficients of static friction μs and kinetic friction μk for these types of equipment and their plausible range of uncertainty are presented. Analytical comparisons with shake table experiments, using mean frictional resistance values, illustrate that reasonable estimations of time history response can be determined. The accuracy of the prediction increases as the effects of stick-slip are minimized.  相似文献   
95.
Bhattacharjee  Sutapa  Kumar  Pramod  Thakur  Praveen K.  Gupta  Kshama 《Natural Hazards》2021,105(2):2117-2145
Natural Hazards - Urban flooding and waterlogging are causing menace in many cities around the world from the perspective of day-to-day functioning, health and hygiene, communication, and the...  相似文献   
96.
The earthquake is known to be an unpredictable geophysical phenomenon. Only few seismic indicators and assumptions of earthquakes can be predicted with probable certainty. This study attempts to analyze the earthquakes over the Indo-Himalayan Border region including Bhutan, Bangladesh, Nepal, China and India during the period from 1995 to 2015. Bangladesh, Bhutan and China borders experience fewer earthquakes than Nepal and India border regions. However, Indo-China rim has inconsistency and vast range in its magnitude. Bangladesh though is a small country with respect to others, but it experiences earthquakes comparable to Bhutan. Nepal experiences highest number of earthquakes. In the last 20 years around 800 records have been observed with moment magnitude > 4.0 Richter scale, while very few records (around 10–12) have been observed for large earthquakes having moment magnitude > 6.0 Richter scale over the region. In this study adaptive neuro-fuzzy inference system has been implemented to assess the predictability of seismic moment associated with large earthquakes having the moment magnitude between 6.0 and 8.0 Richter scales using different combination of epochs, technique and membership functions. The Gaussian membership function with hybrid technique and 40 epochs is observed to be the reasonable model on the basis of the selected spatial and temporal scale. The forecast error in terms of root-mean-square error with the stopping criterion 0.001 has been observed to be 0.006 in case of large earthquakes (> 6.5 Richter scale), that is, forecast accuracy of 99.4%. The model bias of 0.6% may be due to inadequate number of large earthquakes having moment magnitude > 6.5 Richter scale over the region.  相似文献   
97.
98.
The Indian summer monsoon of 1982 and 1997 depicts disparities, however, maximum sea surface temperature anomaly over Niño 3 region is observed in the following winter of both the years. The inter-annual variation of sea surface temperature anomaly shows maximum peak during 1982/83 and 1997/98 El Niño events. The inter-annual variation of multivariate ENSO index also supports the above observation. The analyses of the entire tropical Pacific basin including the equatorial region reveal an anomalous behavior of the mean sea level pressure (MSLP) and the convective activities. The observations further reveal that the negative anomaly in monsoon rainfall over India prevails throughout the monsoon season except for the month of August in 1982, while in the year 1997 the monsoon rainfall anomaly shows random variations. The comparison between the summer monsoon rainfall of 1982 and 1997 depicts that the magnitude of the positive anomaly is same in the month of August. The condition over tropical Pacific during 1982/83 and 1997/98 has been investigated through the variation of outgoing long wave radiation (OLR), MSLP and pressure vertical velocity. The time–longitude plots of OLR and MSLP reveal the changes in pressure distribution and convective pattern over the tropical equatorial Pacific. The zonal and meridional cross section of pressure vertical velocity over the tropical Pacific and tropical Indian Ocean facilitates to understand the strength of the vertical motion during the monsoons of 1982 and 1997.  相似文献   
99.
Forecasting summer monsoon rainfall with precision becomes crucial for the farmers to plan for harvesting in a country like India where the national economy is mostly based on regional agriculture. The forecast of monsoon rainfall based on artificial neural network is a well-researched problem. In the present study, the meta-heuristic ant colony optimization (ACO) technique is implemented to forecast the amount of summer monsoon rainfall for the next day over Kolkata (22.6°N, 88.4°E), India. The ACO technique belongs to swarm intelligence and simulates the decision-making processes of ant colony similar to other adaptive learning techniques. ACO technique takes inspiration from the foraging behaviour of some ant species. The ants deposit pheromone on the ground in order to mark a favourable path that should be followed by other members of the colony. A range of rainfall amount replicating the pheromone concentration is evaluated during the summer monsoon season. The maximum amount of rainfall during summer monsoon season (June—September) is observed to be within the range of 7.5–35 mm during the period from 1998 to 2007, which is in the range 4 category set by the India Meteorological Department (IMD). The result reveals that the accuracy in forecasting the amount of rainfall for the next day during the summer monsoon season using ACO technique is 95 % where as the forecast accuracy is 83 % with Markov chain model (MCM). The forecast through ACO and MCM are compared with other existing models and validated with IMD observations from 2008 to 2012.  相似文献   
100.
As the world's highest and largest plateau, the Qinghai–Xizang Plateau has experienced a greater warming than the Northern Hemisphere and global averages. This warming has been reported to exhibit an elevation-dependent pattern. However, the finding involved plenty of uncertainties caused by the spatially limited datasets and complex topography. Here, we explored an approach integrating satellite-derived LST data and ground records to generate a spatially continuous air temperature dataset for the plateau grasslands from 2003 to 2012, and then examined influences of elevation/topography on temperature change trends. The derived temperature dataset was validated to be closely correlated with field-station records. Based on the derived spatially continuous temperature datasets, we found an opposite change trend of annually average temperature between Qinghai and Xizang Province. The contrasted trend was obvious in daytime and more so in summer season. By analyzing the temperature trend in relation to elevation, we found an enhanced temperature change trend in higher elevation than in lower elevation for autumn nights and winter temperatures, while the temperature change trends for other seasons were more evident in lower elevation areas. The varying temperature change trends as regulated by elevation implies that temperate grasslands have experienced a more rapid temperature change than alpine grasslands during the past decade.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号