首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   4篇
  国内免费   1篇
测绘学   1篇
大气科学   8篇
地球物理   40篇
地质学   29篇
海洋学   16篇
天文学   8篇
自然地理   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   8篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1986年   1篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1978年   3篇
  1975年   2篇
  1973年   2篇
  1962年   1篇
排序方式: 共有103条查询结果,搜索用时 0 毫秒
101.
Monospecific phaeodarian radiolarian assemblages of Castanidium longispinum were suspended in plastic cages built with 225 μm nylon mesh at different water depths from 378 to 5582 m in the central North Pacific. Weight losses of these samples after a suspension period of 61 days were used to determine dissolution rates. The highest weight losses were observed at 378 m where samples lost ~90% of their initial weight. Through the main thermocline weight losses decreased from 90 to 60% and reached a constant value of 40% below it. These weight losses are roughly an order of magnitude higher than those reported by earlier workers. The higher weight losses can be attributed in part to the more soluble nature of the phaeodarian radiolarian skeletons and in part to the improved experimental technique. Kinetic considerations show that temperature is the major factor that controls silica dissolution rates in the ocean. Using an Arrehnius plot for the apparent rate constants, it can be shown that in surface water dissolution rats should be two orders of magnitude higher than in deep water below the main thermocline.  相似文献   
102.
103.
A granular material consists of an assemblage of particles with contacts newly formed or disappeared, changing the micromechanical structures during macroscopic deformation. These structures are idealized through a strain space multiple mechanism model as a twofold structure consisting of a multitude of virtual two‐dimensional mechanisms, each of which consists of a multitude of virtual simple shear mechanisms of one‐dimensional nature. In particular, a second‐order fabric tensor describes direct macroscopic stress–strain relationship, and a fourth‐order fabric tensor describes incremental relationship. In this framework of modeling, the mechanism of interlocking defined as the energy less component of macroscopic strain provides an appropriate bridge between micromechanical and macroscopic dilative component of dilatancy. Another bridge for contractive component of dilatancy is provided through an obvious hypothesis on micromechanical counterparts being associated with virtual simple shear strain. It is also postulated that the dilatancy along the stress path beyond a line slightly above the phase transformation line is only due to the mechanism of interlocking and increment in dilatancy due to this interlocking eventually vanishing for a large shear strain. These classic postulates form the basis for formulating the dilatancy in the strain space multiple mechanism model. The performance of the proposed model is demonstrated through simulation of undrained behavior of sand under monotonic and cyclic loading. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号