首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   3篇
  国内免费   3篇
测绘学   4篇
大气科学   14篇
地球物理   61篇
地质学   104篇
海洋学   19篇
天文学   97篇
自然地理   5篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2018年   9篇
  2017年   7篇
  2016年   4篇
  2015年   12篇
  2014年   13篇
  2013年   20篇
  2012年   6篇
  2011年   7篇
  2010年   11篇
  2009年   20篇
  2008年   13篇
  2007年   7篇
  2006年   9篇
  2005年   7篇
  2004年   5篇
  2003年   5篇
  2002年   6篇
  2001年   9篇
  2000年   9篇
  1999年   8篇
  1998年   8篇
  1997年   5篇
  1996年   6篇
  1995年   2篇
  1994年   5篇
  1993年   4篇
  1992年   6篇
  1991年   5篇
  1990年   2篇
  1989年   4篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   6篇
  1983年   5篇
  1982年   4篇
  1981年   2篇
  1980年   5篇
  1978年   6篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1969年   2篇
  1961年   1篇
排序方式: 共有304条查询结果,搜索用时 15 毫秒
61.
Immediate consequences of nuclear explosions on the structure and physical state of a galactic disk are considered in this paper. Explosions in the nucleus of a Galaxy generate strong shock waves which, when propagating onward heat and condensing the gas, form thin dense ring-like gaseous features behind it. Such rings and dense gaseous complexes have been observed in the central region of the Galaxy. These features have been treated here as the remnants of galactic shocks generated by nuclear explosions. We have estimated the time elapsed since the corresponding explosion, the energy released by explosion and the initial temperature and the velocity of the shock wave thus generated. The cooling of the gas heated by strong shocks has also been considered. The time taken by shock-heated gas to cool to its original temperature has been estimated to be of the order of 105 to 106 yr, according to the initial shock temperature which is about 9×106 K or 6.4×107 K. The rate of emission of energy and the total amount of energy dissipated away in the form of radiation in the cooling process, have been calculated for different values of initial shocktemperatures and also for different field intensities. The high-energy radiation emitted in the cooling process is suggested here as a source for the heating of dust grains, which ultimately are radiated in the infrared spectrum. Thus, a part of the infrared radiation, as measured by many authors, in the central region of the Galaxy, may originate ultimately from the cooling of the shock-heated gas there.  相似文献   
62.
Major- and rare-earth-element (REE) concentrations and UThPb, SmNd, and RbSr isotope systematics are reported for Cenozoic volcanic rocks from northeastern and eastern China. These volcanic rocks, characteristically lacking the calc-alkaline suite of orogenic belts, were emplaced in a rift system which formed in response to the subduction of the western Pacific plate beneath the eastern Asiatic continental margin. The rocks sampled range from basanite and alkali olivine basalt, through olivine tholeiite and quartz tholeiite, to potassic basalts, alkali trachytes, pantellerite, and limburgite. These rock suites represent the volcanic centers of Datong, Hanobar, Kuandian, Changbaishan and Wudalianchi in northeastern China, and Mingxi in the Fujian Province of eastern China.The major-element and REE geochemistry is characteristic of each volcanic suite broadly evolving through cogenetic magmatic processes. Some of the outstanding features of the isotopic correlation arrays are as follows: (1) NdSr shows an anticorrelation within the field of ocean island basalts, extending from the MORB end-member to an enriched, time-averaged high Rb/Sr and Nd/Sr end-member (EM1), (2) SrPb also shows an anticorrelation, similar to that of Hawaiian and walvis Ridge basalts, (3) NdPb shows a positive correlation, and (4) the 207Pb/204Pb vs 206Pb/204Pb plot shows linear arrays parallel to the general trend (NHRL) for MORB on both sides of the geochron, although in the 208Pb/204Pb vs 206Pb/204Pb plot the linear array is significantly displaced above the NHRL in a pattern similar to that of the oceanic island basalts that show the Dupal signatures. In all isotope correlation patterns, the data arrays define two different mantle components—a MORB-like component and an enriched mantle component. The isotopic data presented here clearly demonstrate the existence of Dupal compositions in the sources of the continental volcanic rocks of eastern China. We suggest that the subcontinental mantle beneath eastern China served as the reservoir for the EMI component, and that the MORB component was either introduced by subduction of the Kula-Pacific Ridge beneath the Asiatic plate in the Late Cretaceous, as proposed by Uyeda and Miyashiro, or by upwellings in the subcontinental asthenosphere due to subduction.  相似文献   
63.
The paper presents a constitutive model for simulating the high strain‐rate behavior of sands. Based on the concepts of critical‐state soil mechanics, the bounding surface plasticity theory and the overstress theory of viscoplasticity, the constitutive model simulates the high strain‐rate behavior of sands under uniaxial, triaxial and multi‐axial loading conditions. The model parameters are determined for Ottawa and Fontainebleau sands, and the performance of the model under extreme transient loading conditions is demonstrated through simulations of split Hopkinson pressure bar tests up to a strain rate of 2000/s. The constitutive model is implemented in a finite‐element analysis software Abaqus to analyze underground tunnels in sandy soil subjected to internal blast loads. Parametric studies are conducted to examine the effect of relative density and type of sand and of the depth of tunnel on the variation of stresses and deformations in the soil adjacent to the tunnels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
64.
A wavelet‐based random vibration theory has been developed for the non‐stationary seismic response of liquid storage tanks including soil interaction. The ground motion process has been characterized via estimates of statistical functionals of wavelet coefficients obtained from a single time history of ground accelerations. The tank–liquid–soil system has been modelled as a two‐degree‐of‐freedom (2‐DOF) system. The wavelet domain equations have been formulated and the wavelet coefficients of the required response state are obtained by solving two linear simultaneous algebraic equations. The explicit expression for the instantaneous power spectral density function (PSDF) in terms of the functionals of the input wavelet coefficients has been obtained. The moments of this PSDF are used to estimate the expected pseudo‐spectral acceleration (PSA) response of the tank. Parametric variations are carried out to study the effects of tank height, foundation natural frequency, shear wave velocity of soil and ratio of the mass of tank (including liquid) to the mass of foundation on the PSA responses of tanks. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
65.
66.
辉石巨晶中的硫化物及其成因   总被引:8,自引:1,他引:8  
我国一些地区玄武岩辉石巨晶中的硫化物球泡(0.02-0.05mm)呈点阵式、散布式、定向带状或微裂隙羽状分布。硫化矿物组合是磁黄铁矿-镍黄铁矿-黄铜矿,其中以磁黄铁矿为主(~90%)。根据硫化物的规则排布以及高温矿物组合推测点阵式、散布式硫化物形成于地幔。是由溶解了~1%S的硅酸盐熔体在减压上升过程中析出过饱和的硫所致。  相似文献   
67.
Landslide is considered as one of the most severe threats to human life and property in the hilly areas of the world. The number of landslides and the level of damage across the globe has been increasing over time. Therefore, landslide management is essential to maintain the natural and socio-economic dynamics of the hilly region. Rorachu river basin is one of the most landslide-prone areas of the Sikkim selected for the present study. The prime goal of the study is to prepare landslide susceptibility maps(LSMs) using computer-based advanced machine learning techniques and compare the performance of the models.To properly understand the existing spatial relation with the landslide, twenty factors, including triggering and causative factors, were selected. A deep learning algorithm viz. convolutional neural network model(CNN) and three popular machine learning techniques, i.e., random forest model(RF), artificial neural network model(ANN), and bagging model, were employed to prepare the LSMs. Two separate datasets including training and validation were designed by randomly taken landslide and nonlandslide points. A ratio of 70:30 was considered for the selection of both training and validation points.Multicollinearity was assessed by tolerance and variance inflation factor, and the role of individual conditioning factors was estimated using information gain ratio. The result reveals that there is no severe multicollinearity among the landslide conditioning factors, and the triggering factor rainfall appeared as the leading cause of the landslide. Based on the final prediction values of each model, LSM was constructed and successfully portioned into five distinct classes, like very low, low, moderate, high, and very high susceptibility. The susceptibility class-wise distribution of landslides shows that more than 90% of the landslide area falls under higher landslide susceptibility grades. The precision of models was examined using the area under the curve(AUC) of the receiver operating characteristics(ROC) curve and statistical methods like root mean square error(RMSE) and mean absolute error(MAE). In both datasets(training and validation), the CNN model achieved the maximum AUC value of 0.903 and 0.939, respectively. The lowest value of RMSE and MAE also reveals the better performance of the CNN model. So, it can be concluded that all the models have performed well, but the CNN model has outperformed the other models in terms of precision.  相似文献   
68.
Pollutant delivery through artificial subsurface drainage networks to streams is an important transport mechanism, yet the impact of drainage tiles on groundwater hydrology at the watershed scale has not been well documented. In this study, we developed a two‐dimensional, steady‐state groundwater flow model for a representative Iowa agricultural watershed to simulate the impact of tile drainage density and incision depth on groundwater travel times and proportion of baseflow contributed by tile drains. Varying tile drainage density from 0 to 0.0038 m?1, while maintaining a constant tile incision depth at 1.2 m, resulted in the mean groundwater travel time to decrease exponentially from 40 years to 19 years and increased the tile contribution to baseflow from 0% to an upper bound of 37%. In contrast, varying tile depths from 0.3 to 2.7 m, while maintaining a constant tile drainage density of 0.0038 m?1, caused mean travel times to decrease linearly from 22 to 18 years and increased the tile contribution to baseflow from 30% to 54% in a near‐linear manner. The decrease in the mean travel time was attributed to decrease in the saturated thickness of the aquifer with increasing drainage density and incision depth. Study results indicate that tile drainage affects fundamental watershed characteristics and should be taken into consideration when evaluating water and nitrate export from agricultural regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
69.
The Sea Surface Temperatures (SST) and currents are simulated over the north Indian Ocean, during the onset phase of southwest monsoon for the three years 1994, 1995, and 1996, using daily Special Sensor Microwave/Imager (SSM/I) winds and National Center for Environmental Prediction (NCEP) heat fluxes as forcings in the 2½ layer thermodynamic numerical ocean model. The results are discussed for the 30-day period from 16 May to 13 June for all the three years, to determine the ocean state during the onset phase of SW monsoon. The maximum variability in the simulated SST is found along the Somali coast, Indian coasts, and equatorial regions. The maximum SST in the North Arabian Sea is found to be greater than 30°C and minimum SST in the west equatorial region is 25°C during the onset phase of all three years. Model SSTs are in agreement with Reynolds SST. SST gradients in the north-south as well as in the east-west directions, west of 80°E are found to change significantly prior to the onset. It can be inferred from the study that the SST gradient of 2.5°C/2000 km is seen due north and due west of the region 2° - 7°S, 60° - 65°E, about 8 to 10 days prior to the arrival of SW monsoon near Kerala coast. Upper and lower layer circulation fields do not show prominent interannual variability.  相似文献   
70.
The Banded Hematite Jasper Formation within the Iron Ore Supergroup of the Singhbhum Craton in eastern India comprises fine alternating layers of jasper and specularite. It was deposited at 3000 Ma and deformed by a mobile episode at 2700 Ma. Hematite pigment (<1 μm) mixed with cryptocrystalline silica and specularite (> 10 μm) is chiefly responsible for red to brown rhythmic bands in the hematite jasper facies although thermomagnetic study also shows that minor amounts (1–2%) of magnetite are present. Palaeomagnetic study identifies a dual polarity remanence resident in hematite (D/I = 283/60°, α95 = 12°) which predates deformation. Studies of the fabric of magnetic susceptibility and rock magnetic results suggest a diagenetic origin for this magnetisation with the hematite formed from oxidation of primary magnetite. The palaeopole (32°E, 24°N, dp/dm = 14/18°) records the earliest post-metamorphic magnetisation event in the Orissa Craton. A minimum apparent polar wander motion of the Orissa-Singhbhum craton of through 80° is identified during Late Archaean times (2900-2600 Ma).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号