首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   19篇
  国内免费   2篇
测绘学   6篇
大气科学   43篇
地球物理   80篇
地质学   92篇
海洋学   33篇
天文学   21篇
综合类   1篇
自然地理   22篇
  2024年   1篇
  2022年   2篇
  2021年   7篇
  2020年   6篇
  2019年   10篇
  2018年   13篇
  2017年   8篇
  2016年   15篇
  2015年   10篇
  2014年   8篇
  2013年   34篇
  2012年   18篇
  2011年   25篇
  2010年   12篇
  2009年   18篇
  2008年   11篇
  2007年   8篇
  2006年   17篇
  2005年   10篇
  2004年   2篇
  2003年   10篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   6篇
  1996年   6篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有298条查询结果,搜索用时 62 毫秒
21.
We report on the development and current capabilities of the ALOMAR Rayleigh/Mie/Raman lidar. This instrument is one of the core instruments of the international ALOMAR facility, located near Andenes in Norway at 69°N and 16°E. The major task of the instrument is to perform advanced studies of the Arctic middle atmosphere over altitudes between about 15 to 90 km on a climatological basis. These studies address questions about the thermal structure of the Arctic middle atmosphere, the dynamical processes acting therein, and of aerosols in the form of stratospheric background aerosol, polar stratospheric clouds, noctilucent clouds, and injected aerosols of volcanic or anthropogenic origin. Furthermore, the lidar is meant to work together with other remote sensing instruments, both ground- and satellite-based, and with balloon- and rocket-borne instruments performing in situ observations. The instrument is basically a twin lidar, using two independent power lasers and two tiltable receiving telescopes. The power lasers are Nd:YAG lasers emitting at wavelengths 1064, 532, and 355 nm and producing 30 pulses per second each. The power lasers are highly stabilized in both their wavelengths and the directions of their laser beams. The laser beams are emitted into the atmosphere fully coaxial with the line-of-sight of the receiving telescopes. The latter use primary mirrors of 1.8 m diameter and are tiltable within 30° off zenith. Their fields-of-view have 180 rad angular diameter. Spectral separation, filtering, and detection of the received photons are made on an optical bench which carries, among a multitude of other optical components, three double Fabry-Perot interferometers (two for 532 and one for 355 nm) and one single Fabry-Perot interferometer (for 1064 nm). A number of separate detector channels also allow registration of photons which are produced by rotational-vibrational and rotational Raman scatter on N2 and N2+O2 molecules, respectively. Currently, up to 36 detector channels simultaneously record the photons collected by the telescopes. The internal and external instrument operations are automated so that this very complex instrument can be operated by a single engineer. Currently the lidar is heavily used for measurements of temperature profiles, of cloud particle properties such as their altitude, particle densities and size distributions, and of stratospheric winds. Due to its very effective spectral and spatial filtering, the lidar has unique capabilities to work in full sunlight. Under these conditions it can measure temperatures up to 65 km altitude and determine particle size distributions of overhead noctilucent clouds. Due to its very high mechanical and optical stability, it can also employed efficiently under marginal weather conditions when data on the middle atmosphere can be collected only through small breaks in the tropospheric cloud layers.  相似文献   
22.
23.
In this paper, we first discuss the controversial result of the work by Cabanes et al. (Science 294:840–842, 2001), who suggested that the rate of past century sea level rise may have been overestimated, considering the limited and heterogeneous location of historical tide gauges and the high regional variability of thermal expansion which was supposed to dominate the observed sea level. If correct, this conclusion would have solved the problem raised by the IPCC third assessment report [Church et al, Cambridge University Press, Cambridge, pp 881, 2001], namely, the factor two difference between the 20th century observed sea level rise and the computed climatic contributions. However, recent investigations based on new ocean temperature data sets indicate that thermal expansion only explains part (about 0.4 mm/year) of the 1.8 mm/year observed sea level rise of the past few decades. In fact, the Cabanes et al.’s conclusion was incorrect due to a contamination of abnormally high ocean temperature data in the Gulf Stream area that led to an overestimate of thermal expansion in this region. In this paper, we also estimate thermal expansion over the last decade (1993–2003), using a new ocean temperature and salinity database. We compare our result with three other estimates, two being based on global gridded data sets, and one based on an approach similar to that developed here. It is found that the mean rate of thermosteric sea level rise over the past decade is 1.5±0.3 mm/year, i.e. 50% of the observed 3 mm/year by satellite altimetry. For both time spans, past few decades and last decade, a contribution of 1.4 mm/year is not explained by thermal expansion, thus needs to be of water mass origin. Direct estimates of land ice melt for the recent years account for about 1 mm/year sea level rise. Thus, at least for the last decade, we have moved closer to explaining the observed rate of sea level rise than the IPCC third assessment report.  相似文献   
24.
Records of hydrologic parameters, especially those parameters that are directly linked to air temperature, were analyzed to find indicators of recent climate warming in Minnesota, USA. Minnesota is projected to be vulnerable to climate change because of its location in the northern temperate zone of the globe. Ice-out and ice-in dates on lakes, spring (snowmelt) runoff timing, spring discharge values in streams, and stream water temperatures recorded up to the year 2002 were selected for study. The analysis was conducted by inspection of 10-year moving averages, linear regression on complete and on partial records, and by ranking and sorting of events. Moving averages were used for illustrative purposes only. All statistics were computed on annual data. All parameters examined show trends, and sometimes quite variable trends, over different periods of the record. With the exception of spring stream flow rates the trends of all parameters examined point toward a warming climate in Minnesota over the last two or three decades. Although hidden among strong variability from year to year, ice-out dates on 73 lakes have been shifting to an earlier date at a rate of −0.13 days/year from 1965 to 2002, while ice-in dates on 34 lakes have been delayed by 0.75 days/year from 1979 to 2002. From 1990 to 2002 the rates of change increased to −0.25 days/year for ice-out and 1.44 days/year for ice-in. Trend analyses also show that spring runoff at 21 stream gaging sites examined occurs earlier. From 1964 to 2002 the first spring runoff (due to snowmelt) has occurred −0.30 days/year earlier and the first spring peak runoff −0.23 days/year earlier. The stream water temperature records from 15 sites in the Minneapolis/St Paul metropolitan area shows warming by 0.11C/year, on the average, from 1977 to 2002. Urban development may have had a strong influence. The analysis of spring stream flow rates was inconclusive, probably because runoff is linked as much to precipitation and land use as to air temperature. Ranking and sorting of annual data shows that a disproportionately large number of early lake ice-out dates has occurred after 1985, but also between 1940 and 1950; similarly late lake ice-in has occurred more frequently since about 1990. Ranking and sorting of first spring runoff dates also gave evidence of earlier occurrences, i.e. climate warming in late winter. A relationship of changes in hydrologic parameters with trends in air temperature records was demonstrated. Ice-out dates were shown to correlate most strongly with average March air temperatures shifting by −2.0 days for a 1°C increase in March air temperature. Spring runoff dates also show a relationship with March air temperatures; spring runoff dates shift at a rate of −2.5 days/1°C minimum March air temperature change. Water temperatures at seven river sites in the Minneapolis/St Paul metropolitan area show an average rise of 0.46°C in river temperature/1°C mean annual air temperature change, but this rate of change probably includes effects of urban development. In conclusion, records of five hydrologic parameters that are closely linked to air temperature show a trend that suggests recent climate warming in Minnesota, and especially from 1990 to 2002. The recent rates of change calculated from the records are very noteworthy, but must not be used to project future parameter values, since trends cannot continue indefinitely, and trend reversals can be seen in some of the long-term records.  相似文献   
25.
The seafloor of central Eckernförde Bay is characterised by soft muddy sediments that contain free methane gas. Bubbles of free gas cause acoustic turbidity which is observed with acoustic remote sensing systems. Repeated surveys with subbottom profiler and side scan sonar revealed an annual period both of depth of the acoustic turbidity and backscatter strength. The effects are delayed by 3–4 months relative to the atmospheric temperature cycle. In addition, prominent pockmarks, partly related to gas seepage, were detected with the acoustic systems. In a direct approach gas concentrations were measured from cores using the gas chromatography technique. From different tests it is concluded that subsampling of a core should start at its base and should be completed as soon as possible, at least within 35 min after core recovery. Comparison of methane concentrations of summer and winter cores revealed no significant seasonal variation. Thus, it is concluded that the temperature and pressure influences upon solubility control the depth variability of acoustic turbidity which is observed with acoustic remote sensing systems. The delay relative to the atmospheric temperature cycle is caused by slow heat transfer through the water column. The atmospheric temperature cycle as ‘exiting function’ for variable gas solubility offers an opportunity for modelling and predicting the depth of the acoustic turbidity. In practice, however, small-scale variations of, e.g., salinity, or gas concentration profile in the sediment impose limits to predictions. In addition, oceanographic influences as mixing in the water column, variable water inflow, etc. are further complications that reduce the reliability of predictions.  相似文献   
26.
We evaluated several capture and analysis techniques for estimating abundance and size structure of freshwater crayfish (Paranephrops planifrons) (koura) from a forested North Island, New Zealand stream to provide a methodological basis for future population studies. Direct observation at night and collecting with baited traps were not considered useful. A quadrat sampler was highly biased toward collecting small individuals. Handnetting at night and estimating abundances using the depletion method were not as efficient as handnetting on different dates and analysing by a mark‐recapture technique. Electrofishing was effective in collecting koura from different habitats and resulted in the highest abundance estimates, and mark‐recapture estimates appeared to be more precise than depletion estimates, especially if multiple recaptures were made. Handnetting captured more large crayfish relative to electrofishing or the quadrat sampler.  相似文献   
27.
We constrain the timing and kinematics of the Serifos detachment in the southwestern Cyclades, Greece, using low-temperature thermochronometry. Fission-track dating shows that the Serifos detachment was active between ~13 and 6 Ma and that the Serifos granodiorite in its footwall intruded at or before ~12–11 Ma into the extensional shear zone and initially cooled very rapidly at rates >180°C per million year. The mylonite zone at the top of the granodiorite and mylonitic structures in its country rocks record a consistent top-SSW shear sense in the ductile crust. In the brittle regime top-NNE shear-sense indicators occur as well. Conjugate top-SSW and top-NNE high-angle normal faults are the youngest deformational features and cut across the detachment. Age–distance relationships for the fission-track data display a relatively flat pattern. We discuss a model advocating initial top-SSW movement on the Serifos detachment before and during emplacement of the granodiorite. Updoming of the detachment during exhumation and cooling caused subsequent bivergent extension in the brittle crust.  相似文献   
28.
Changes in the persistence of dry and wet periods are of particular interest for many sectors, as long-term deviations from normal precipitation strongly affect the water availability. Here, an indicator is introduced to explore variability and trends of long-lasting dry and wet periods by using decile based thresholds. The test of three different thresholds for ending those periods revealed only slight influences of the chosen threshold on the spatiotemporal pattern and trends. The methodology of the deciles indicator is illustrated and studied exemplarily for a spatially highly resolved data set for Saxony, Germany within 1901–2010. Within that region decile wet and dry periods, respectively, occur approximately four times within 10 years, last on average 11 months and cover on average more than 35 % of the stations. Several years to decades long periods with particularly frequent and/or long decile dry or wet periods were identified. The computed trends strongly depend upon the analysis period, as frequency, duration and spatial coverage of decile periods show strong variations up to multi-decadal time scales. Nonetheless, there is some indication that dry period coverage increased within the 20th century, while wet period coverage decreased. However, in the most recent decades the long-term trends reversed.  相似文献   
29.
Abstract

Processes that regulate the central pressure and maximum wind speeds of tornado‐like vortices are explored with an axisymmetric numerical model. The model consists of a rotating cylinder of fluid enclosed within rigid boundaries. The momentum diffusivity is a fixed function of height. In the rotating reference frame, relative motion is induced by a buoyancy force in the vicinity of the rotation axis, leading to the formation of a central vortex. The work done by the central buoyancy force on a parcel rising along the axis defines theoretical and empirical wind speed bounds on both the updraft and the low‐level vortex. Certain processes are found that allow for the vortex to greatly exceed this wind speed bound, or the so‐called thermodynamic speed limit; however, in most of the parameter space the vortex wind speeds are close to the thermodynamic speed limit.

The most effective limit‐breaking process involves a supercritical end‐wall vortex with an axial jet. In steady state, the supercritical vortex sustains wind speeds 2.0 times the speed limit. A transient end‐wall vortex, with the vortex breakdown travelling rapidly downwards toward the surface, is able to achieve wind speeds 5.0 times the speed limit. Warming of the subsiding vortex core past the vortex breakdown increases the maximum steady‐state azimuthal wind speed by about 20% from what it would be otherwise. Axial momentum diffusion is not found to significantly enhance the surface pressure deficit in any of the simulations.  相似文献   
30.
The current study focuses on understanding key factors controlling geochemical export in eight diverse coastal watersheds at seasonal and annual time scales. Geochemical, atmospheric and hydrologic data across a range of hydro‐climatic regimes and varying land uses were investigated and relationships analysed. A hyperbolic dilution model was fitted for each watershed system to evaluate discharge–concentration relationships. Nitrate concentration effects were observed in watersheds exposed to high atmospheric deposition rates as well as agricultural watersheds, whereas urban watersheds showed nitrate dilution effects. Dilution patterns were observed for calcium, magnesium and sulfate for almost all watersheds. Seasonal loads for almost all constituents were noted to be mainly driven by hydrologic seasonality, but are also dependent on inputs (atmospheric deposition and land use sources). Understanding the primary controls on hydro‐chemical interactions is critical for developing and refining predictive water quality models, especially in coastal watersheds where sensitive downstream ecosystems act as receiving waters for upstream pollutant loads. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号