首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   18篇
  国内免费   2篇
测绘学   5篇
大气科学   29篇
地球物理   78篇
地质学   91篇
海洋学   23篇
天文学   11篇
综合类   1篇
自然地理   24篇
  2024年   1篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   10篇
  2018年   14篇
  2017年   8篇
  2016年   15篇
  2015年   9篇
  2014年   9篇
  2013年   33篇
  2012年   19篇
  2011年   24篇
  2010年   15篇
  2009年   16篇
  2008年   11篇
  2007年   7篇
  2006年   12篇
  2005年   12篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1971年   1篇
  1969年   2篇
排序方式: 共有262条查询结果,搜索用时 552 毫秒
161.
Crater densities on planetary surfaces allow assessing relative ages but so far firm calibration of so‐called cratering‐chronology models is available only for the Moon and limited to the past 4.1 billion years. Most planetary geological time scales are still model‐dependent, and essentially constrained by meteorite ages or by comparison to (dynamical) solar system evolution models. Here we describe in situ calibration of the Martian cratering chronology using cosmogenic and radiogenic isotope ages obtained by the NASA Curiosity rover. We determined the cratering‐rate ratio between Moon and Mars for recent times, and extended the calibration of cratering rates to earlier times than those based exclusively on lunar data. Our preferred interpretation supports monotonic flux decay since at least 4.24 Ga and likely since about 4.45 Ga, implying orbital migration of the giant planets, and its direct, transient, dynamical effect on the planetesimal populations was initiated early. But only Martian Sample Return will provide strongly needed capability for distinction of the different models currently available.  相似文献   
162.
The Martabe Au–Ag deposit, North Sumatra Province, Indonesia, is a high sulfidation epithermal deposit, which is hosted by Neogene sandstone, siltstone, volcanic breccia, and andesite to basaltic andesite of Angkola Formation. The deposit consists of six ore bodies that occurred as silicified massive ore (enargite–luzonite–pyrite–tetrahedrite–tellurides), quartz veins (tetrahedrite–galena–sphalerite–chalcopyrite), banded sulfide veins (pyrite–tetrahedrite–sphalerite–galena) and cavity filling. All ore bodies are controlled by N–S and NW–SE trending faults. The Barani and Horas ore bodies are located in the southeast of the Purnama ore body. Fluid inclusion microthermometry, and alunite‐pyrite and barite‐pyrite pairs sulfur isotopic geothermometry show slightly different formation temperatures among the ore bodies. Formation temperature and salinity of fluid inclusions of the Purnama ore body range from 200 to 260 C and from 6 to 8 wt.% NaCl equivalent, respectively. Formation temperature and salinity of fluid inclusions of the Barani ore body range from 200 to 220 °C and from 0 to 2.5 wt.% NaCl equivalent and those of the Horas ore body range from 240 to 275 °C and from 2 to 3 wt.% NaCl equivalent, respectively. The Barani and Horas ore bodies are less silicified and sulfides are less abundant than the Purnama ore body. A relationship between enthalpy and chloride content indicates mixing of hot saline fluids with cooler dilute fluids during the mineralization of each of the ore bodies. The δ18O values of quartz samples from the southeast ore bodies exhibit a wide range from +4.2 to +12.9‰ with an average value of +7.0‰. The δ18O values of H2O estimated from δ18O values of quartz, barite and calcite confirm the oxygen isotopic shift to near meteoric water trend, which support the incorporation of meteoric water. Salinity of the fluid inclusions decrease from >5 wt.% NaCl equivalent in the Purnama ore body to <3 wt.% NaCl equivalent in the Barani ore body, indicating different fluid systems during mineralization. The δ34S values of sulfide and sulfate in Purnama range from ? 4.2 to +5.5‰ and from +1.2 to +26.7‰, those in the Barani range from ? 4.3 to +26.4‰ and from +3.9 to +18.5‰ and those in the Horas ore body range from ? 11.8 to +3.5‰ and from +1.4 to +25.7‰, respectively. The δ34S of total bulk sulfur in southeastern ore bodies (Σδ34S) was estimated to be approximately +6‰. The estimated sulfur fugacity during formation of the Purnama and Horas ore bodies is relatively high. It was between 10?4.8 and 10?10.8 atm at 220 to 260 °C. Tellurium fugacity was between 10?7.8 and 10?9.5 atm at 260 °C and between 10?9 and 10?10.6 atm at 220 °C in the Purnama ore body. The Barani ore body was formed at lower fS2, lower than about 10?14 atm at 200 to 220 °C based on the presence of arsenopyrite and pyrrhotite in the early stage, and between 10?14 and 10?12 atm based on the existence of enargite and tennantite in the last stage. © 2016 The Society of Resource Geology  相似文献   
163.
Atmospheric circulation over the North Atlantic has undergone significant fluctuations during the Holocene. To better constrain these changes and their impacts on the Fennoscandian subarctic, we investigated molecular and inorganic proxies as well as plant wax D/H isotopes (δDC28) in a Holocene sedimentary record from Lake Torneträsk (Sweden). These data indicate a thermal maximum c. 8100 to 6300 cal. a BP with reduced soil organic matter input, followed by a long‐term cooling trend with increasing soil erosion. δD data suggest a stable atmospheric circulation with predominance of westerly flow and North Atlantic moisture sourcing during the Early and Middle Holocene. A substantial depletion in δD followed by increased flood frequency starting at c. 5300 cal. a BP and intensifying c. 1500 cal. a BP suggests a reorganization of the atmospheric circulation from zonal towards meridional flow with predominantly Arctic Ocean and Baltic Sea moisture sourcing.  相似文献   
164.
Surface mining in the Elk Valley, British Columbia, involves removing vegetation, soil, and rock to access underlying metallurgical coal. Subsequent waste rock is placed into adjacent valleys, frequently burying headwater streams. Due to their coarse texture, waste rock piles increase infiltration and percolation, increasing solute transport and concentration of geochemicals in downstream surface waters. Previous research suggests that weathering solutes are transport limited, and it is hypothesized that revegetation will enhance evapotranspiration (ET) and reduce percolation through the waste rock, potentially reducing loading. This study examined the surface‐atmosphere water and energy exchanges using the eddy covariance technique for three waste rock surfaces with different levels of reclamation: (a) an ~25‐year‐old mixed coniferous forest, (b) a grass site, and (c) bare waste rock. Measurements were taken from May to October in 2013 and 2014. Soil moisture and matric suction were measured to 1‐m depth. Sap flow at the forested site was measured to partition transpiration from total ET. In all years, ET rates were greatest at the forested site, followed by the grass cover and lowest at the bare waste rock site. Growing season ET rates at the forest were 56% higher than grass in 2013 and 35% higher in 2014. At the vegetated sites, climate was the main driver of ET, with high radiation, and warm and dry conditions enhancing fluxes. Maximum ET at these sites corresponded with peak growing season, with vegetation increasing both transpiration and rainfall interception. At the bare rock site, ET was weakly related to atmospheric conditions, and ET rates briefly increased during periods following rainfall when near‐surface soil moisture was enhanced. Transpiration comprised 29% of overall ET at the forest site from late July to early October. Results suggest that vegetation establishment can be incorporated into mine reclamation plans to enhance ET rates and limit percolation, potentially reducing downstream geochemical loads.  相似文献   
165.
The Mangala Valles is a 900-km long outflow channel system in the highlands adjacent to the south-eastern flank of the Tharsis bulge. This work was intended to answer the following two questions unresolved in previous studies: (1) Was there only one source of water (Mangala Fossa at the valley head which is one of the Medusae Fossae troughs or graben) or were other sources also involved in the valley-carving water supply, and (2) Was there only one episode of flooding (maybe with phases) or were there several episodes significantly separated in time. The geologic analysis of HRSC image 0286 and mapping supported by analysis of MOC and THEMIS images show that Mangala Valles was carved by water released from several sources. The major source was Mangala Fossa, which probably formed in response to magmatic dike intrusion. The graben cracked the cryosphere and permitted the release of groundwater held under hydrostatic pressure. This major source was augmented by a few smaller-scale sources at localities in (1) two mapped heads of magmatic dikes, (2) heads of two clusters of sinuous channels, and (3) probably several large knob terrain locals. The analysis of results of crater counts at more than 60 localities showed that the first episode of formation of Mangala Valles occurred ~3.5 Ga ago and was followed by three more episodes, one occurred ~1 Ga ago, another one ~0.5 Ga ago, and the last one ~0.2 Ga ago. East of the mapped area there are extended and thick lava flows whose source may be the eastern continuation of the Mangala source graben. Crater counts in 10 localities on these lava flows correlate with those taken on the Mangala valley elements supporting the idea that the valley head graben was caused by dike intrusions. Our observations suggest that the waning stage of the latest flooding episode (~0.2 Ga ago) led to the formation at the valley head of meander-like features sharing some characteristics with meanders of terrestrial rivers. If this analogy is correct this could suggest a short episode of global warming in Late Amazonian time.  相似文献   
166.
Depth profiles in the sediment porewaters of the Chattahoochee River (Georgia, USA) show that iron oxides scavenge arsenate in the water column and settle to the sediment-water interface (SWI) where they are reduced by iron-reducing bacteria. During their reduction, these particles seem to release arsenic to the porewaters in the form of arsenate only. Sediment slurry incubations were conducted to determine the effect of low concentrations of arsenic (?10 μM) on biogeochemical processes in these sediments. Experiments confirm that any arsenate (As(V)) added to these sediments is immediately adsorbed in oxic conditions and released in anoxic conditions during the microbial reduction of authigenic iron oxides. Incubations in the presence of ?1 μM As(V) reveal that arsenate is released but not concomitantly reduced during this process. Simultaneously, microbial iron reduction is enhanced significantly, spurring the simultaneous release of arsenate into porewaters and secondary formation of crystalline iron oxides. Above 1 μM As(V), however, the microbial reductive dissolution of iron oxides appears inhibited by arsenate, and arsenite is produced in excess in the porewaters. These incubations show that even low inputs of arsenic to riverine sediments may affect microbial processes, the stability of iron oxides and, indirectly, the cycling of arsenic. Possible mechanisms for such effects on iron reduction are proposed.  相似文献   
167.
Transfer of organic carbon (OC) from the terrestrial to the oceanic carbon pool is largely driven by riverine and aeolian transport. Before transport, however, terrigenous organic matter can be retained in intermediate terrestrial reservoirs such as soils. Using compound-specific radiocarbon analysis of terrigenous biomarkers their average terrestrial residence time can be evaluated.Here we show compound-specific radiocarbon (14C) ages of terrigenous biomarkers and bulk 14C ages accompanied by geochemical proxy data from core top samples collected along transects in front of several river mouths in the Black Sea. 14C ages of long chain n-alkanes, long chain n-fatty acids and total organic carbon (TOC) are highest in front of the river mouths, correlating well with BIT (branched and isoprenoid tetraether) indices, which indicates contribution of pre-aged, soil-derived terrigenous organic matter. The radiocarbon ages decrease further offshore towards locations where organic matter is dominated by marine production and aeolian input potentially contributes terrigenous organic matter. Average terrestrial residence times of vascular plant biomarkers deduced from n-C29+31 alkanes and n-C28+30 fatty acids ages from stations directly in front of the river mouths range from 900 ± 70 years to 4400 ± 170 years. These average residence times correlate with size and topography in climatically similar catchments, whereas the climatic regime appears to control continental carbon turnover times in morphologically similar drainage areas of the Black Sea catchment. Along-transect data imply petrogenic contribution of n-C29+31 alkanes and input via different terrigenous biomarker transport modes, i.e., riverine and aeolian, resulting in aged biomarkers at offshore core locations. Because n-C29+31 alkanes show contributions from petrogenic sources, n-C28+30 fatty acids likely provide better estimates of average terrestrial residence times of vascular plant biomarkers. Moreover, sedimentary n-C28 and n-C30 fatty acids appear clearly much less influenced by autochthonous sources than n-C24 and n-C26 fatty acids as indicated by increasing radiocarbon ages with increasing chain-length and are, thus, more representative as vascular plant biomarkers.  相似文献   
168.
Synthetic data have long been employed in hydrology for model development and testing. The objective of this study was to generate a synthetic dataset of hydrologic response with higher spatial and temporal resolution than could presently be obtained in the field, spanning a longer period than the typical duration of monitoring campaigns in experimental catchments. The synthetic dataset was generated for a rangeland catchment with the Integrated Hydrology Model (InHM), and is presented for future use by the community. The InHM boundary‐value problem is based upon the previously reported hypothetical reality of Tarrawarra‐like hydrologic response. Whereas the emphasis in developing the hypothetical reality was on parameterising InHM to reproduce observations from the Tarrawarra catchment, the emphasis in generating the synthetic dataset is on developing an internally valid hydrologic‐response dataset that extends well beyond the period of observations at Tarrawarra. The synthetic dataset spans 11 years of continuous forcing and response data (e.g. integrated response, distributed fluxes, state variable dynamics). The dataset should be useful for a wide range of problems including evaluation of simple rainfall runoff modelling techniques, design of measurement networks, development of data‐assimilation algorithms, and studies on information theory. The dataset is available at: ftp://pangea.stanford.edu/pub/loague/ . Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
169.
170.
In this study, we use records of nitrogen isotope ratios (δ15N), UK’37 temperature estimates, organic carbon and opal percentages from high-resolution sediment cores located in the eastern equatorial Pacific (EEP) to explore the mechanisms linking millennial-scale changes in low-latitude sea surface temperature, water column denitrification and surface productivity to the timing of northern or southern polar climate during the last 100,000 yr. Our results support a hypothesis that the Southern Hemisphere, and its connection to the low latitudes via shallow subsurface ocean circulation, has a primary influence on the biogeochemistry of the EEP. In addition, our results suggest that, during the last glacial stage, denitrification rates fluctuated on millennial timescales in response to water-column ventilation rather than upstream oxidant demand in intermediate-depth waters.However, due to the poor age constraints available for Marine Isotopic Stage (MIS) 3, the EEP sedimentary data presented here could support two conflicting mechanisms, one driven by enhanced intermediate overturning circulation in the Southern Ocean during Heinrich Events/Antarctic Warm Events, implying that subsurface flow rates control thermocline ventilation, and a second one consistent with more sluggish intermediate circulation during Antarctic Warm Events and giving a central role to the temperature control on oxygen solubility in Southern Ocean surface waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号