首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   709篇
  免费   7篇
  国内免费   5篇
测绘学   12篇
大气科学   48篇
地球物理   246篇
地质学   234篇
海洋学   41篇
天文学   98篇
综合类   8篇
自然地理   34篇
  2024年   8篇
  2023年   1篇
  2022年   11篇
  2021年   13篇
  2020年   30篇
  2019年   21篇
  2018年   33篇
  2017年   27篇
  2016年   40篇
  2015年   29篇
  2014年   34篇
  2013年   33篇
  2012年   40篇
  2011年   54篇
  2010年   33篇
  2009年   36篇
  2008年   38篇
  2007年   24篇
  2006年   41篇
  2005年   24篇
  2004年   30篇
  2003年   18篇
  2002年   16篇
  2001年   10篇
  2000年   7篇
  1999年   7篇
  1998年   7篇
  1997年   6篇
  1996年   5篇
  1995年   10篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1985年   3篇
  1984年   3篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有721条查询结果,搜索用时 62 毫秒
361.
Stability Study of a Longitudinal Dispersivity Identification Method   总被引:1,自引:0,他引:1  
  相似文献   
362.
    
The active geodynamic setting of the Northern Apennines is characterised by extension in the axial zone of the chain, and by a more complex tectonic behaviour in the frontal part of the belt. In the latter sector, moderate seismicity occurs, displaying compressional, strike-slip and extensional focal plane solutions with variably oriented P and T axes. For this area, a review of available geological and geophysical data has been integrated by the analysis of seismic reflection lines calibrated with deep well logs. This study confirms that, as already suggested by some previous workers, thrusting and related folding in the study area ceased in Early Pleistocene times. This feature is in contrast with the hypothesis of active thrusting related to a subducting lithospheric slab beneath the chain—an issue which is largely debated based on available geophysical information. Our analysis shows that the Northern Apennines are characterised by an active tectonic setting which is similar to that of the central and southern portions of the belt. These areas all display a Late Quaternary inactivity of the thrust front. NE–SW oriented extension (perpendicular to the strike of the orogen) is well established in their axial zones, whereas a less homogeneous stress field characterises their external sectors and the adjacent foreland. Within this framework, the seismotectonic behaviour of the Northern Apennines—and probably of the whole Italian peninsula between the Po Plain and the Southern Apennines (north of the Calabrian Arc)—may be interpreted as essentially controlled by two main processes. The first of them involves tectonic uplift, possibly related with slab detachment and associated unbending of the foreland plate. The second process consists of a present-day northwestward motion of the Adria block with respect to stable Europe.  相似文献   
363.
The solution to the 2-D time-dependent unsaturated flow equation is numerically approximated by a second-order accurate cell-centered finite-volume discretization on unstructured grids. The approximation method is based on a vertex-centered Least Squares linear reconstruction of the solution gradients at mesh edges.A Taylor series development in time of the water content dependent variable in a finite-difference framework guarantees that the proposed finite volume method is mass conservative. A Picard iterative scheme solves at each time step the resulting non-linear algebraic problem. The performance of the method is assessed on five different test cases and implementing four distinct soil constitutive relationships. The first test case deals with a column infiltration problem. It shows the capability of providing a mass-conservative behavior. The second test case verifies the numerical approximation by comparison with an analytical mixed saturated–unsaturated solution. In this case, the water drains from a fully saturated portion of a 1-D column. The third and fourth test cases illustrate the performance of the approximation scheme on sharp soil heterogeneities on 1-D and 2-D multi-layered infiltration problems. The 2-D case shows the passage of an abrupt infiltration front across a curved interface between two layers. Finally, the fifth test case compares the numerical results with an analytical solution that is developed for a 2-D heterogeneous soil with a source term representing plant roots. This last test case illustrates the formal second-order accuracy of the method in the numerical approximation of the pressure head.  相似文献   
364.
    
In Northern Hemisphere deglaciation records, the transition from the last glacial to the Holocene indicates a rapid return to near-glacial conditions during the Younger Dryas, whereas their Southern Hemisphere ice core counterparts record two separate cooling events: the Antarctic Cold Reversal and the Oceanic Cold Reversal. Spatial distribution and relative timing of these events in both hemispheres are central for our understanding of causes and mechanisms of abrupt climate change. To date, no marine record from the southern mid-latitudes conclusively demonstrates that the Younger Dryas was a significant event in the Southern Ocean. Here, we present high-resolution oxygen isotope and iron content records of a radiocarbon-dated sedimentary sequence from the Great Australian Bight, which constrains oceanic and atmospheric changes during the last deglaciation. Oxygen isotopes from planktonic foraminifera indicate two rapid cold reversals (between 13.1 and 11.1 kyr BP) separated by a brief warming. The sedimentary iron content, interpreted as a proxy for wind strength, indicates a simultaneous change in atmospheric circulation pattern. Both records demonstrate the existence of cooling events in the Southern Hemisphere, which are synchronous with the Northern Hemisphere Younger Dryas cold reversal (between 12.9 and 11.5 kyr BP). Such evidence for the spatial distribution and timing of abrupt climatic fluctuations is essential data for groundtruthing results derived from global climate models.  相似文献   
365.
Systematic in situ analysis of active fault zones in Val d’Agri (southern Italy) suggests that the acquisition of quantitative data on fault-related structural discontinuities is fundamental for (1) discriminating between the latter and older regional features, (2) defining the architecture and related permeability structure of faults, and (3) performing simple statistics in order to evaluate the validity range within which fault characteristics may be considered to be fractals. This type of information can be integrated with regional seismotectonic analysis in order to asses the present-day conditions of deformation characterising the area, and to constrain the possible kinematics of the seismogenic structures controlling earthquake activity in this sector of the southern Apennines. The results of our study are also of interest for modelling earthquake sources, since a knowledge of the permeability structure and scaling properties of a faulted rock volume is potentially relevant for simulating the time and space dependent behaviour of fault zones during a seismic cycle.  相似文献   
366.
367.
A 45-km-long regional dike was emplaced over a period of 2 weeks in August 2014 at the boundary between the East and North Volcanic Zones in Iceland. This is the first regional dike emplacement in Iceland monitored with modern geophysical networks, the importance of which relates to regional dikes feeding most of the large fissure (e.g., Eldgja 934 and Laki 1783) and lava shield (e.g. early Holocene Skjaldbreidur and Trölladyngja) eruptions. During this time, the dike generated some 17,000 earthquakes, more than produced in Iceland as a whole over a normal year. The dike initiated close to the Bardarbunga Volcano but gradually extended to the northeast until it crossed the boundary between the East Volcanic Zone (EVZ) and the North Volcanic Zone (NVZ). We infer that the strike of the dike changes abruptly at a point, from about N45°E (coinciding with the trend of the EVZ) to N15°E (coinciding with the trend of the NVZ). This change in strike occurs at latitude 64.7°, exactly the same latitude at which about 10 Ma dikes in East Iceland change strike in a similar way. This suggests that the change in the regional stress field from the southern to the northern part of Iceland has been maintained at this latitude for 10 million years. Analytical and numerical models indicate that the dike-induced stress field results in stress concentration around faults and particularly shallow magma chambers and calderas in its vicinity, such as Tungnafellsjökull, Kverkfjöll, and Askja. In particular, the dike has induced high compressive, shear, and tensile stresses at the location of the Bardarbunga shallow chamber and (caldera) ring-fault where numerous earthquakes occurred during the dike emplacement, many of which have exceeded M5 (the largest M5.7). The first segment of the dike induced high tensile stresses in the nearby part of the Bardarbunga magma chamber/ring-fault resulting in radially outward injection of a dike from the chamber at a high angle to the strike of the regional dike. The location of maximum stress at Bardarbunga fluctuates along the chamber/ring-fault boundary in harmony with dike size and/or pressure changes and encourages ring-dike formation and associated magma flow within the chamber. Caldera collapse and/or eruption in some of these volcanoes is possible, most likely in Bardarbunga, but depends largely on the future development of the regional dike.  相似文献   
368.
The 2002–03 Mt Etna flank eruption began on 26 October 2002 and finished on 28 January 2003, after three months of continuous explosive activity and discontinuous lava flow output. The eruption involved the opening of eruptive fissures on the NE and S flanks of the volcano, with lava flow output and fire fountaining until 5 November. After this date, the eruption continued exclusively on the S flank, with continuous explosive activity and lava flows active between 13 November and 28 January 2003. Multi-disciplinary data collected during the eruption (petrology, analyses of ash components, gas geochemistry, field surveys, thermal mapping and structural surveys) allowed us to analyse the dynamics of the eruption. The eruption was triggered either by (i) accumulation and eventual ascent of magma from depth or (ii) depressurisation of the edifice due to spreading of the eastern flank of the volcano. The extraordinary explosivity makes the 2002–03 eruption a unique event in the last 300 years, comparable only with La Montagnola 1763 and the 2001 Lower Vents eruptions. A notable feature of the eruption was also the simultaneous effusion of lavas with different composition and emplacement features. Magma erupted from the NE fissure represented the partially degassed magma fraction normally residing within the central conduits and the shallow plumbing system. The magma that erupted from the S fissure was the relatively undegassed, volatile-rich, buoyant fraction which drained the deep feeding system, bypassing the central conduits. This is typical of most Etnean eccentric eruptions. We believe that there is a high probability that Mount Etna has entered a new eruptive phase, with magma being supplied to a deep reservoir independent from the central conduit, that could periodically produce sufficient overpressure to propagate a dyke to the surface and generate further flank eruptions.Editorial responsibility: J. Donnelly-Nolan  相似文献   
369.
    

In order to unravel the tectonic evolution of the north-central sector of the Sicily Channel (Central Mediterranean), a seismo-stratigraphic analysis of single- and multi-channel seismic reflection profiles has been carried out. This allowed to identify, between 20 and 50 km offshore the central-southern coast of Sicily, a ~80-km-long deformation belt, characterized by a set of WNW–ESE to NW–SE fault segments showing a poly-phasic activity. Within this belt, we observed: i) Miocene normal faults reactivated during Zanclean–Piacenzian time by dextral strike-slip motion, as a consequence of the Africa–Europe convergence; ii) releasing and restraining bend geometries forming well-developed pull-apart basins and compressive structures. In the central and western sectors of the belt, we identified local transpressional reactivations of Piacenzian time, attested by well-defined compressive features like push-up structures and fault-bend anticlines. The reconstruction of timing and style of tectonic deformation suggest a strike-slip reactivation of inherited normal faults and the local subsequent positive tectonic inversion, often documented along oblique thrust ramps. This pattern represents a key for an improved knowledge of the structural style of foreland fold-and-thrust belts propagating in a preexisting extensional domain. With regard to active tectonics and seismic hazards, recent GPS data and local seismicity events suggest that this deformation process could be still active and accomplished through deep-buried structures; moreover, several normal faults showing moderate displacements have been identified on top of the Madrepore Bank and Malta High, offsetting the Late Quaternary deposits. Finally, inside the northern part of the Gela Basin, multiple slope failures, originated during Pleistocene by the further advancing of the Gela Nappe, reveal tectonically induced potential instability processes.

  相似文献   
370.
    
Bedding‐parallel dolomite seams occur in a clay‐poor carbonate succession of the Apennines. The seams are composed of a high concentration of dolomite crystals compared to the hosting dolomitic limestone. SEM images document microcracking, and in many cases even crushing and fragmentation, of dolomite crystals and accumulation of non‐carbonate insoluble material both along micro‐stylolites within the seams and around dolomite crystals of the seams. We interpret the seams as hybrid structures between pressure‐solution seams and compaction bands, which formed during burial. The euhedral dolomite crystals scattered in the micritic matrix represent the insoluble residue produced by the progressive dissolution of calcite. As calcite dissolution proceeds, the concentration of dolomite crystals increases, eventually resulting in a dolomite seam in which locally a dolomite crystal‐supported texture is attained. At this stage, the dolomite crystals within the seam start to collide, crush and fragment, so that the dolomite seam behaves like a compaction band.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号