全文获取类型
收费全文 | 660篇 |
免费 | 13篇 |
国内免费 | 4篇 |
专业分类
测绘学 | 12篇 |
大气科学 | 38篇 |
地球物理 | 236篇 |
地质学 | 214篇 |
海洋学 | 41篇 |
天文学 | 95篇 |
综合类 | 8篇 |
自然地理 | 33篇 |
出版年
2024年 | 4篇 |
2023年 | 1篇 |
2022年 | 11篇 |
2021年 | 13篇 |
2020年 | 30篇 |
2019年 | 21篇 |
2018年 | 33篇 |
2017年 | 27篇 |
2016年 | 40篇 |
2015年 | 28篇 |
2014年 | 31篇 |
2013年 | 30篇 |
2012年 | 40篇 |
2011年 | 53篇 |
2010年 | 31篇 |
2009年 | 35篇 |
2008年 | 34篇 |
2007年 | 24篇 |
2006年 | 39篇 |
2005年 | 23篇 |
2004年 | 27篇 |
2003年 | 16篇 |
2002年 | 16篇 |
2001年 | 9篇 |
2000年 | 7篇 |
1999年 | 7篇 |
1998年 | 5篇 |
1997年 | 3篇 |
1996年 | 5篇 |
1995年 | 8篇 |
1994年 | 3篇 |
1993年 | 6篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1990年 | 3篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1985年 | 3篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1973年 | 1篇 |
1970年 | 1篇 |
排序方式: 共有677条查询结果,搜索用时 15 毫秒
121.
Stefano Segadelli Paolo Vescovi Kei Ogata Alessandro Chelli Andrea Zanini Tiziano Boschetti Emma Petrella Lorenzo Toscani Alessandro Gargini Fulvio Celico 《水文研究》2017,31(5):1058-1073
The main aim of this study is the experimental analysis of the hydrogeological behaviour of the Mt. Prinzera ultramafic massif in the northern Apennines, Italy. The analysed multidisciplinary database has been acquired through (a) geologic and structural survey; (b) geomorphologic survey; (c) hydrogeological monitoring; (d) physico‐chemical analyses; and (e) isotopic analyses. The ultramafic medium is made of several lithological units, tectonically overlapped. Between them, a low‐permeability, discontinuous unit has been identified. This unit behaves as an aquitard and causes a perched groundwater to temporary flow within the upper medium, close to the surface. This perched groundwater flows out along several structurally controlled depressions, and then several high‐altitude temporary springs can be observed during recharge, together with several perennial basal (i.e., low altitude) springs, caused by the compartmentalisation of the system because of high‐angle tectonic discontinuities. 相似文献
122.
In this paper, we addressed a sensitivity analysis of the snow module of the GEOtop2.0 model at point and catchment scale in a small high‐elevation catchment in the Eastern Italian Alps (catchment size: 61 km2). Simulated snow depth and snow water equivalent at the point scale were compared with measured data at four locations from 2009 to 2013. At the catchment scale, simulated snow‐covered area (SCA) was compared with binary snow cover maps derived from moderate‐resolution imaging spectroradiometer (MODIS) and Landsat satellite imagery. Sensitivity analyses were used to assess the effect of different model parameterizations on model performance at both scales and the effect of different thresholds of simulated snow depth on the agreement with MODIS data. Our results at point scale indicated that modifying only the “snow correction factor” resulted in substantial improvements of the snow model and effectively compensated inaccurate winter precipitation by enhancing snow accumulation. SCA inaccuracies at catchment scale during accumulation and melt period were affected little by different snow depth thresholds when using calibrated winter precipitation from point scale. However, inaccuracies were strongly controlled by topographic characteristics and model parameterizations driving snow albedo (“snow ageing coefficient” and “extinction of snow albedo”) during accumulation and melt period. Although highest accuracies (overall accuracy = 1 in 86% of the catchment area) were observed during winter, lower accuracies (overall accuracy < 0.7) occurred during the early accumulation and melt period (in 29% and 23%, respectively), mostly present in areas with grassland and forest, slopes of 20–40°, areas exposed NW or areas with a topographic roughness index of ?0.25 to 0 m. These findings may give recommendations for defining more effective model parameterization strategies and guide future work, in which simulated and MODIS SCA may be combined to generate improved products for SCA monitoring in Alpine catchments. 相似文献
123.
Alessandro Amorosi Luigi Bruno Bruno Campo Bianca Costagli Wan Hong Vincenzo Picotti Stefano Claudio Vaiani 《Sedimentology》2021,68(1):402-424
Despite increased application of subsurface datasets below the limits of seismic resolution, reconstructing near‐surface deformation of shallow key stratigraphic markers beneath modern alluvial and coastal plains through sediment core analysis has received little attention. Highly resolved stratigraphy of Upper Pleistocene to Holocene (Marine Isotope Stage 5e to Marine Isotope Stage 1) alluvial, deltaic and coastal depositional systems across the southern Po Plain, down to 150 m depth, provides an unambiguous documentation on the deformation of previously flat‐lying strata that goes back in time beyond the limits of morphological, historical and palaeoseismic records. Five prominent key horizons, accurately selected on the basis of their sedimentological characteristics and typified for their fossil content, were used as highly effective stratigraphic markers (M1 to M5) that can be tracked for tens of kilometres across the basin. A facies‐controlled approach tied to a robust chronology (102 radiocarbon dates) reveals considerable deformation of laterally extensive nearshore (M1), continental (M2 and M3) and lagoon (M4 and M5) marker beds originally deposited in a horizontal position (M1, M4 and M5). The areas where antiformal geometries are best observed are remarkably coincident with the axes of buried ramp anticlines, across which new seismic images reveal substantially warped stratal geometries of Lower Pleistocene strata. The striking spatial coincidence of fold crests with the epicentres of historic and instrumental seismicity suggests that deformation of marker beds M1 to M5 might reflect, in part at least, syntectonically generated relief and, thus, active tectonism. Precise identification and lateral tracing of chronologically constrained stratigraphic markers in the 14C time window through combined sedimentological and palaeoecological data may delineate late Quaternary subsurface stratigraphic architecture at an unprecedented level of detail, outlining cryptic stratal geometries at the sub‐seismic scale. This approach is highly reproducible in tectonically active Quaternary depositional systems and can help to assess patterns of active deformation in the subsurface of modern alluvial and coastal plains worldwide. 相似文献
124.
Costanza Di Stefano;Alessio Nicosia;Vincenzo Pampalone;Vincenzo Palmeri;Vito Ferro; 《水文研究》2024,38(4):e15119
The knowledge of the hydraulic characteristics of rill flows is needed to improve the understanding and the accurate modelling of upland erosion processes. Flume investigations are developed to schematize conditions useful to analyze the influence of a unique variable significant for modelling rill hydraulics, while field investigations are used to simulate morphological and hydraulic conditions of natural cases. The main aim of this investigation is to compare flow resistance measurements carried out using a rectangular rill channel (flume data) and manually generated and naturally shaped rills (plot data) for the same soils and hydraulic conditions. The two data sets allowed for establishing how the soil grain roughness and rill cross-section shape affect flow resistance using a theoretical equation deduced by applying dimensional analysis and self-similarity theory. The analysis developed for a fixed-bed channel with a rectangular cross-section demonstrated that the influence of different soil roughness on the Darcy-Weisbach friction factor is approximately equal to ±1%, while for a rill with an irregular cross-section the same effect is almost equal to ±2%. Therefore, for an open-channel flow on a fixed bed, the effect of the grain size roughness on the friction factor is limited. For each examined soil, the investigation also demonstrated that the rill cross-section shape leads to a variability of the friction factor from −20% to +30%. This result highlights that, for a fixed-bed channel, the effect of the cross-section shape on the Darcy-Weisbach friction factor is much greater than that due to the soil grain size roughness. The main implication of this work is that the results deduced by laboratory measurements with regular cross-sections, thus neglecting a complex geometry, can be affected by relevant discrepancies from those obtained by the field measurements, which better simulate natural conditions. 相似文献
125.
Vincenzo Randazzo Johan Le Goff Pietro Di Stefano John Reijmer Simona Todaro Maria Simona Cacciatore 《Sedimentology》2020,67(5):2360-2391
Tectonic processes are widely considered as a mechanism causing carbonate platform margin instabilities leading to the emplacement of mass transport deposits and calciturbidites. However, only few examples establishing a clear link between tectonics and re-sedimentation processes are known from the literature. The two-dimensional and three-dimensional wire-cut walls of hundreds of quarries extracting ornamental limestones (for example, Perlato di Sicilia) from the Western Sicily Cretaceous Escarpment in Italy expose a series of mass transport deposits. The depositional architecture, spatial facies distribution and sedimentary features of these deposits were studied in detail. Thin section analysis was used to define the microfacies characteristics and to determine the age of the re-sedimented limestones. Eleven facies types grouped into four facies associations were recognized that defined specific depositional processes and environments. The stratigraphic architecture of the slope was reconstructed using four composite facies successions based on the detailed analysis and correlation of the field sections. The palaeoslope orientation was reconstructed based on the analysis of synsedimentary faults, slump scars and pinch-out geometries. The Western Sicily Cretaceous Escarpment was strongly influenced by synsedimentary transtensional tectonics in combination with magmatic processes, as suggested by the presence of tuffites and pillow lava intercalations within the re-sedimented carbonate series. These volcanics point to a major role of crustal shear as a trigger for mass transport deposit emplacement. The facies distribution along the Western Sicily Cretaceous Escarpment delivers new insights into the deformation processes accompanying the crustal extension of the Cretaceous western Tethys realm. 相似文献
126.
Fernando J. Selman Fuyan Bian Israel Blanchard Stephane Brillant Lodovico Coccato Stefano Cristiani Pascale Hibon Darshan Kakkad Andrea Mehner Sabine Moehler Diego Parraguez Claudia Reyes Thomas Rivinius Sergio Vera Frédéric P. A. Vogt Peter M. Weilbacher Bin Yang 《Astronomische Nachrichten》2020,341(1):26-31
We report the serendipitous discovery of a redshift 3.68 quasar while validating the star WD 0308-565 as a spectrophotometric standard star for the Multi-Unit Spectroscopic Explorer (MUSE) calibration plan. Based on the MUSE observations, the luminosity of the quasar at 1350A (L1350) is 4.71 × 1045 erg s−1. The black hole mass is 2.5 × 109 Mʘ, and bolometric luminosity is 1.57 × 1047 erg s−1. Present in the field of view of a star in the calibration plan of the instrument makes this a very valuable quasar as it will receive many repeated visits in the coming years making it an ideal candidate for reverberation mapping studies. 相似文献
127.
Carlo Alberto Masoli Lorenzo Petronio Emiliano Gordini Michele Deponte Gualtiero Boehm Diego Cotterle Roberto Romeo Alfio Barbagallo Rinaldo Belletti Stefano Maffione Fabio Meneghini Luca Baradello 《Near Surface Geophysics》2020,18(1):73-89
The Port of Trieste is an international hub for land and sea trade with the dynamic markets of central and eastern Europe. Thanks to its deep natural draft (about 18 m), the modern high‐capacity vessels can moor to the piers. In view of the foreseen increase in maritime traffic, this harbour is undergoing modernization in order to improve the commercial traffic capability. In this expansion plan, the container Trieste Marine Terminal, Pier VII, is seeking an extension by about 200 m. In support of this feasibility study, multidisciplinary data acquisition was conducted in order to characterize the seabed, the sub‐bottom sediments and the bedrock (flysch formation) in front of the Trieste Marine Terminal. The acquisition of high‐resolution swath bathymetry, side‐scan sonar and magnetometer data allowed a detailed analysis of the seabed conditions from an environmental and safety perspective. High‐resolution seismic reflection data enabled us to characterize the Plio‐Quaternary soft sediments and the underlying bedrock. A static underwater refraction survey was performed using hydrophone array deployed on the sea bottom to obtain seismic velocities and to achieve a reliable time‐to‐depth conversion of reflection seismic data by first‐arrival tomographic inversion. In addition to geophysical investigations, 11 offshore boreholes were drilled for detailed logging. In situ standard penetration tests were performed on core samples with the use of a pocket penetrometer and pocket vane in order to obtain uniaxial compressive strength, undrained shear strength and undrained cohesion values, and assess the cohesive soils. During drilling, 17 undisturbed samples and 12 semi‐disturbed samples were extracted to perform laboratory tests for the identification of the principal geotechnical parameters. The goal was to obtain a reliable geological/geotechnical model in front of the Trieste Marine Terminal – from the seabed to the bedrock. Below the seafloor, a sequence of about 20–30 m thickness, containing Plio‐Quaternary soft sediments, overlies the flysch, which locally presents alteration with rocks of reduced quality. The geophysical–geotechnical integrated approach allowed us to identify and map the top of the bedrock and provided valuable information for planning the pier extension project. 相似文献
128.
129.
Flood and ebb currents provide different contributions to the initiation and evolution of tidal channel networks, generating diverse network structures and channel cross-sections. In order to separate the effects of these contributions, a physical model of a sloping tidal-flat basin was set up in the laboratory. Depending on the degree of tidal asymmetry imposed offshore, either flood or ebb currents can be enhanced. The experimental results show that the ebb current has a higher capability to initiate and shape tidal networks than the flood current. Headward erosion is mainly induced by the ebb flow. The slightly inclined flat surface tends to reduce the energy of the flood current and to enhance the ebb current, thus prolonging the duration of morphodynamic activity as well as sediment motion. Overall, flood-dominated tides favour the formation of small-scale channel branches in the upper basin zone, while long lasting ebb-dominated tides result in more complex, wider and deeper tidal networks. © 2019 John Wiley & Sons, Ltd. 相似文献
130.
Alessandro Simoni Martino Bernard Matteo Berti Mauro Boreggio Stefano Lanzoni Laura Maria Stancanelli Carlo Gregoretti 《地球表面变化过程与地形》2020,45(14):3556-3571
In the Dolomitic region, abundant coarse hillslope sediment is commonly found at the toe of rocky cliffs. Ephemeral channels originate where lower permeability bedrock surfaces concentrate surface runoff. Debris flows initiate along such channels following intense rainfall and determine the progressive erosion and deepening of the channels. Sediment recharge mechanisms include rock fall, dry ravel processes and channel-bank failures. Here we document debris flow activity that took place in an active debris flow basin during the year 2015. The Cancia basin is located on the southwestern slope of Mount Antelao (3264 m a.s.l.) in the dolomitic region of the eastern Italian Alps. The 2.5 km2 basin is incised in dolomitic limestone rocks. The data consist of repeated topographic surveys, distributed rainfall measurements, time-lapse (2 s) videos of two events and pore pressure measurements in the channel bed. During July and August 2015, two debris flow events occurred, following similarly intense rainstorms. We compared rainfall data to existing rainfall triggering thresholds and simulated the hydrological response of the headwater catchment with a distributed model in order to estimate the total and peak water discharge. Our data clearly illustrate how debris entrainment along the channel is the main contributor to the overall mobilized volume and that erosion is dominant when the channel slope exceeds 16°. Further downstream, sediment accumulation and depletion occurred alternately for the two successive events, indicating that sediment availability along the channel also influences the flow behaviour along the prevailing-transport reach. The comparison between monitoring data, topographical analysis and hydrological simulation allows the estimation of the average solid concentration of the two events and suggests that debris availability has a significant influence on the debris flow volume. © 2020 John Wiley & Sons, Ltd. 相似文献