首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1001篇
  免费   62篇
  国内免费   13篇
测绘学   50篇
大气科学   160篇
地球物理   222篇
地质学   432篇
海洋学   47篇
天文学   91篇
综合类   2篇
自然地理   72篇
  2023年   6篇
  2022年   7篇
  2021年   23篇
  2020年   29篇
  2019年   24篇
  2018年   54篇
  2017年   30篇
  2016年   54篇
  2015年   35篇
  2014年   51篇
  2013年   67篇
  2012年   54篇
  2011年   64篇
  2010年   54篇
  2009年   81篇
  2008年   60篇
  2007年   41篇
  2006年   50篇
  2005年   39篇
  2004年   39篇
  2003年   33篇
  2002年   16篇
  2001年   18篇
  2000年   16篇
  1999年   13篇
  1998年   18篇
  1997年   13篇
  1996年   7篇
  1995年   9篇
  1994年   5篇
  1993年   8篇
  1992年   5篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1987年   6篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   3篇
  1976年   4篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
  1969年   5篇
  1968年   3篇
  1967年   4篇
  1964年   1篇
排序方式: 共有1076条查询结果,搜索用时 406 毫秒
871.
The role of sub seabed topographically controlled fluid migration is assessed to improve our understanding of distributions of acoustic chimneys at the Nyegga pockmark field on the mid-Norwegian continental margin. 3D seismic data interpretations resulted in topographic gradients of seismic time surfaces and RMS amplitude maps. Topographical gradient maps and flow tracing allowed identifying migration pathways and trapping locations for free gas within the shallow sub seabed. The occurrence of acoustic chimneys, pockmarks and mounds correlate with identified fluid migration pathways and gas trapping locations. An important factor that controls the trapping locations and the lateral distribution of seeps on the seabed at Nyegga is the variation through time of the depth of the base of the gas hydrate stability zone (BGHSZ). Fluids can derive from gas hydrate systems that are suspected of being a biogenic source and/or Tertiary domes that are considered to show leakage of thermogenic fluids to the shallow geosphere.  相似文献   
872.
The newly developed P-Cable 3D seismic system allows for high-resolution seismic imaging to characterize upper geosphere geological features focusing on geofluid expressions (gas chimneys), shallow gas and gas hydrate reservoirs. Seismic imaging of a geofluid system of an Arctic sediment drift at the Vestnesa Ridge, offshore western Svalbard, provides significantly improved details of internal chimney structures from the seafloor to ∼500 m bsf (below seafloor). The chimneys connect to pockmarks at the seafloor and indicate focused fluid flow through gas hydrated sediments. The pockmarks are not buried and align at the ridge-crest pointing to recent, topography-controlled fluid discharge. Chimneys are fuelled by sources beneath the base of gas hydrate stability zone (GHSZ) that is evident at ∼160–170 m bsf as indicated by a bottom-simulating reflector (BSR). Conduit centres that are not vertically straight but shift laterally by up to 200 m as well as discontinuous internal chimney reflections indicate heterogeneous hydraulic fracturing of the sediments. Episodically active, pressure-driven focused fluid flow could explain the hydro-fracturing processes that control the plumbing system and lead to extensive pockmark formation at crest of the Vestnesa Ridge. High-amplitude anomalies in the upper 50 m of the chimney structures suggest formations of near-surface gas hydrates and/or authigenic carbonate precipitation. Acoustic anomalies, expressed as high amplitudes and amplitude blanking, are irregularly distributed throughout the deeper parts of the chimneys and provide evidence for the variability of hydrate and/or carbonate formation in space and time.  相似文献   
873.
This study applies an optimized phytoscreening method to locate a chlorinated ethene plume discharging into a stream. To evaluate the conditions most suitable for successful phytoscreening, trees along the stream bank were monitored through different seasons with different environmental conditions and hence different uptake/loss scenarios. Vinyl chloride (VC) as well as cis‐dichloroethylene (cis‐DCE), trichloroethylene (TCE), and tetrachloroethylene (PCE) were detected in the trees, documenting that phytoscreening is a viable method to locate chlorinated ethene plumes, including VC, discharging to streams. The results reveal, that phytoscreening for VC is more sensitive to environmental conditions affecting transpiration than for the other chlorinated ethenes detected. Conditions leading to higher groundwater uptake by transpiration than contaminant loss by diffusion from the tree trunks are optimal (e.g., low relative humidity, plentiful hours of sunshine and an intermediate air temperature). Additionally, low precipitation prior to the sampling event is beneficial, as uptake of infiltrating precipitation dilutes the concentration in the trees. All chlorinated ethenes were sensitive to dilution by clean precipitation and in some months, this resulted in no detection of contaminants in the trees at all. Under optimal environmental conditions the tree cores allowed detection of chlorinated solvents and their metabolites in the underlying groundwater. Whereas, for less ideal conditions there was a risk of no detection of the more volatile VC. This study is promising for the future applicability of phytoscreening to locate shallow groundwater contamination with the degradation products of chlorinated solvents.  相似文献   
874.
875.
The seismic K-Horizon is the key to gaining understanding on the deep supercritical geothermal rocks in Southern Tuscany. The K-Horizon is hosted in metamorphic rocks, which cause strong seismic wavefield scattering resulting in a poor signal-to-noise ratio. Our study aims to reveal high-resolution seismic images of the K-Horizon below a geothermal field in Southern Tuscany, using an advanced three-dimensional seismic depth imaging approach. The key seismic pre-processing steps in the time domain include muting a large amount of persistent noise based on the statistical analysis of the seismic amplitudes, and tomostatics technique to correct for static effects. We carried out seismic depth imaging using Kirchhoff Pre-Stack Depth Migration and Fresnel Volume Migration techniques. Each migration technique was tested with constant and heterogeneous three-dimensional velocity models. Due to the difficulties in determining emergent angles for this low signal-to-noise ratio data set, the migration results with the heterogeneous three-dimensional velocity model show less coherent reflections compared to the migration results using the constant velocity model. Both velocity models however lead to relatively the same structure and depth of the K-Horizon, indicating the similarity of the average velocities along the wave propagation paths in both velocity models. With both velocity models Fresnel Volume Migration yields the K-Horizon with better reflection coherency and higher signal-to-noise ratio than standard Kirchhoff Pre-Stack Depth Migration. Nevertheless, both migration techniques have been able to reveal the K-Horizon with relatively high resolution and provide a reliable basis for geothermal rock characterization as well as steering of the first geothermal well penetrating the K-Horizon.  相似文献   
876.
The development of cost-effective and environmentally acceptable geophysical methods for the exploration of mineral resources is a challenging task. Seismic methods have the potential to delineate the mineral deposits at greater depths with sufficiently high resolution. In hardrock environments, which typically host the majority of metallic mineral deposits, seismic depth-imaging workflows are challenged by steeply dipping structures, strong heterogeneity and the related wavefield scattering in the overburden as well as the often limited signal-to-noise ratio of the acquired data. In this study, we have developed a workflow for imaging a major iron-oxide deposit at its accurate position in depth domain while simultaneously characterizing the near-surface glacial overburden including surrounding structures like crossing faults at high resolution. Our workflow has successfully been showcased on a 2D surface seismic legacy data set from the Ludvika mining area in central Sweden acquired in 2016. We applied focusing prestack depth-imaging techniques to obtain a clear and well-resolved image of the mineralization down to over 1000 m depth. In order to account for the shallow low-velocity layer within the depth-imaging algorithm, we carefully derived a migration velocity model through an integrative approach. This comprised the incorporation of the tomographic near-surface model, the extension of the velocities down to the main reflectors based on borehole information and conventional semblance analysis. In the final step, the evaluation and update of the velocities by investigation of common image gathers for the main target reflectors were used. Although for our data set the reflections from the mineralization show a strong coherency and continuity in the seismic section, reflective structures in a hardrock environment are typically less continuous. In order to image the internal structure of the mineralization and decipher the surrounding structures, we applied the concept of reflection image spectroscopy to the data, which allows the imaging of wavelength-specific characteristics within the reflective body. As a result, conjugate crossing faults around the mineralization can directly be imaged in a low-frequency band while the internal structure was obtained within the high-frequency bands.  相似文献   
877.
Understanding the role of forest fires on water budgets of subarctic Precambrian Shield catchments is important because of growing evidence that fire activity is increasing. Most research has focused on assessing impacts on individual landscape units, so it is unclear how changes manifest at the catchment scale enough to alter water budgets. The objective of this study was to determine the water budget impact of a forest fire that partially burned a ~450 km2 subarctic Precambrian Shield basin. Water budget components were measured in a pair of catchments: one burnt and another unburnt. Burnt and unburnt areas had comparable net radiation, but thaw was deeper in burned areas. There were deeper snow packs in burns. Differences in streamflow between the catchments were within measurement uncertainty. Enhanced winter streamflow from the burned watershed was evident by icing growth at the streamflow gauge location, which was not observed in the unburned catchment. Wintertime water chemistry was also clearly elevated in dissolved organics, and organic-associated nutrients. Application of a framework to assess hydrological resilience of watersheds to wildfire reveal that watersheds with both high bedrock and open water fractions are more resilient to hydrological change after fire in the subarctic shield, and resilience decreases with increasingly climatically wet conditions. This suggests significant changes in runoff magnitude, timing and water chemistry of many Shield catchments following wildfire depend on pre-fire land cover distribution, the extent of the wildfire and climatic conditions that follow the fire.  相似文献   
878.
Geoarchaeological and chronological evidence from the remote Gilf Kebir Plateau in southwest Egypt suggests a new model for the influence of early and mid‐Holocene precipitation regimes on land‐use strategies of prehistoric settlers in what is now the center of the largest hyperarid area on earth. We hypothesize that the quantitatively higher, daytime, monsoon summer rainfall characteristic of the early Holocene (9300–5400 14C yr B.P./8400–4300 yr B.C.) resulted in less grass growth on the plateau compared to the winter rains that presumably fell in the cool nights during the terminal phase of the Holocene pluvial (5400–4500 yr B.P./4300–3300 yr B.C.). The unparalleled climatic transition at 5400 yr B.P. (4300 yr B.C.) caused a fundamental environmental change that resulted in different patterns of human behavior, economy, and land use in the canyon‐like valleys and on the plains surrounding the plateau. The model emphasizes the crucial impact of seasonal rainfall distribution on cultural landscapes in arid regions and the lower significance of annual precipitation rates, with implications for future numeric climate models. It also serves as an example of how past climate changes have affected human societies. © 2004 Wiley Periodicals, Inc.  相似文献   
879.
The injection of CO2 at the Ketzin pilot CO2 storage site started in June 2008 and ended in August 2013. During the 62 months of injection, a total amount of about 67 kt of CO2 was injected into a saline aquifer. A third repeat three‐dimensional seismic survey, serving as the first post‐injection survey, was acquired in 2015, aiming to investigate the recent movement of the injected CO2. Consistent with the previous two time‐lapse surveys, a predominantly west–northwest migration of the gaseous CO2 plume in the up‐dip direction within the reservoir is inferred in this first post‐injection survey. No systematic anomalies are detected through the reservoir overburden. The extent of the CO2 plume west of the injection site is almost identical to that found in the 2012 second repeat survey (after injection of 61 kt); however, there is a significant decrease in its size east of the injection site. Assessment of the CO2 plume distribution suggests that the decrease in the size of the anomaly may be due to multiple factors, such as limited vertical resolution, CO2 dissolution, and CO2 migration into thin layers, in addition to the effects of ambient noise. Four‐dimensional seismic modelling based on dynamic flow simulations indicates that a dynamic balance between the newly injected CO2 after the second repeat survey and the CO2 migrating into thin layers and being dissolved was reached by the time of the first post‐injection survey. In view of the significant uncertainties in CO2 mass estimation, both patchy and non‐patchy saturation models for the Ketzin site were taken into consideration.  相似文献   
880.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号