首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4499篇
  免费   887篇
  国内免费   1254篇
测绘学   301篇
大气科学   802篇
地球物理   1143篇
地质学   2161篇
海洋学   907篇
天文学   236篇
综合类   601篇
自然地理   489篇
  2024年   33篇
  2023年   68篇
  2022年   206篇
  2021年   238篇
  2020年   224篇
  2019年   246篇
  2018年   315篇
  2017年   274篇
  2016年   282篇
  2015年   220篇
  2014年   277篇
  2013年   268篇
  2012年   353篇
  2011年   308篇
  2010年   298篇
  2009年   283篇
  2008年   225篇
  2007年   252篇
  2006年   202篇
  2005年   190篇
  2004年   132篇
  2003年   124篇
  2002年   97篇
  2001年   110篇
  2000年   157篇
  1999年   215篇
  1998年   147篇
  1997年   170篇
  1996年   118篇
  1995年   112篇
  1994年   105篇
  1993年   99篇
  1992年   68篇
  1991年   52篇
  1990年   45篇
  1989年   30篇
  1988年   20篇
  1987年   19篇
  1986年   9篇
  1985年   6篇
  1984年   6篇
  1983年   12篇
  1982年   7篇
  1981年   6篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
  1958年   2篇
  1957年   1篇
  1954年   2篇
排序方式: 共有6640条查询结果,搜索用时 15 毫秒
191.
192.
193.
During tunnel excavation, the deformation of surrounding rock due to the unloading of rock mass will vary with time. However, the measured displacement of surrounding rock is only a part of the actual longitudinal deformation profile. There is a need to analyze the longitudinal deformation profile to identify the deformation state and evaluate the stability of surrounding rock mass. In the present article, the variation of pre-deformation of surrounding rock due to excavation was analyzed, and the release coefficient was obtained from the measured results. For the Qingdao subsea tunnel, the measured crown settlement of surrounding rock was analyzed using the regression analysis method, and the longitudinal deformation profile of rock mass was simulated using the numerical calculation method. Moreover, based on the conditions of the subsea tunnel, a solid-fluid coupling model test was carried out to check the reliability of the numerical calculation results. The results of the model test were consistent with the numerical calculation results.  相似文献   
194.
Excessive alcohol consumption leads to liver disease. Extensive evidence suggests that C-phycocyanin (C-PC), a chromophore phycocyanobilin derived from Spirulina platensis, exerts protective effects against chemical-induced organ damage. In this study, we investigated whether C-PC could protect against ethanol-induced acute liver injury. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (CHOL), low-density lipoprotein (LDL), liver homogenate malondialdehyde (MDA), superoxide dismutase (SOD) content were measured, and pathological examination of liver sections were examined. C-PC showed obvious inhibitory effects on serum ALT, AST, TG, CHOL, LDL and MDA, and SOD content significantly increased in the liver. The structure of hepatic lobules was clear, liver sinus returned to normal, and liver cell cords were arranged in neat rows. Cloudiness, swelling, inflammatory cell infiltration and spotty necrosis of liver cells were significantly reduced. Therefore, C-PC can significantly protect against ethanol-induced acute liver injury.  相似文献   
195.
196.
The transport process of nZnO in geosynthetic clay liner (GCL), an anti-seepage material used in municipal solid waste (MSW) landfills, under different seepage temperature conditions was conducted. The transport behavior of nZnO in GCL was analyzed. Results showed that the retardation performance of current GCL used in MSW landfills anti-seepage system against nZnO pollutants was poor. nZnO successfully permeated the GCL and entered external soil–groundwater environment, posing health threats to the life of organisms. Although seepage temperature exerted a small effect on nZnO suspension leakage volume, change in seepage temperature affects the mass of transported nZnO in GCL by redispersion of nZnO in suspension. As the seepage temperature increases, the mass of nZnO that permeated the GCL increases, reaching a maximum at 50 °C, and then decreases.  相似文献   
197.
Measuring and analyzing internal dam temperature may provide insight into evaluating the integrity of earthen dams. Temperature in a dam, with the advent of modern distributed temperature sensing (DTS) technique, is conveniently measured. The analysis of the temperature is conducted based on a hydro-thermal coupled analysis technique. In this study, DTS-based temperature data and VS2DHI (a finite difference code for analyzing two-dimensional heat transport in porous media) were used to analyze the hydro-thermal coupled behavior in a dam. The results of this analysis show that the temperature variation in an earthen dam is closely related to seepage conditions. Additionally, a localized high-temperature (26 °C) zone found in the measured data of the dam, which raised concern to engineers on site, is explained through either hot water infiltration into the foundation layer or lower permeability of the foundation layer than the magnitude that appeared in the design document. These findings demonstrate that hydro-thermal coupled analysis has the potential for evaluating the integrity of earthen dams.  相似文献   
198.
In the cool temperate region of South Korea, oxygen and hydrogen isotopes of groundwater, lake water, and precipitation were studied to determine the season of groundwater recharge. All the groundwater samples, irrespective of season, on δ18O–δ2H scale plotted along the summer precipitation, suggesting summer precipitation largely modulates recharge. The deuterium excess values of groundwater (d-excess) show clear seasonal difference, higher in winter (> 18‰) and lower in summer (< 10‰). And its resemblance to the summer precipitation d-excess value further suggests dominant role of summer precipitation in groundwater recharge. Based on the mass balance equation, with end-member d-excess values of seasonal precipitation and groundwater as input variables, groundwater is composed of 66% summer and 34% winter precipitation. Despite the study area being heavily forested, summer rainfall contribution higher than winter suggests that evapotranspiration effect is minimal in the region; may be due to thin sand–gravel-based porous soil overlying highly weathered granitic rock system.  相似文献   
199.
To study the application of the TOPMODEL and the Xin’anjiang model to rainfall runoff simulation in semi-humid regions, the Holtan excess infiltration runoff module was added to the TOPMODEL structure. The basin of the Heihe Jinpen Reservoir in Shaanxi Province, China, was selected as the study area. Rainfall and runoff data and digital elevation models were collected. The watershed topographic parameters and 21 floods that occurred from 2005 to 2013 were obtained to simulate rainfall runoff. Results show that the improved TOPMODEL and the Xin’anjiang model can effectively stimulate rainfall runoff. The average values of their Nash coefficient are 0.84 and 0.83, respectively, upon calibration, and 0.78 and 0.80, respectively, upon validation. The Xin’anjiang model performs slightly better than the improved TOPMODEL. The results of large flood peaks are better than those of ordinary floods. Both results can be used to simulate the rainfall runoff of a watershed.  相似文献   
200.
Steep coal seam mining activities will frequently occur during the next few decades in China. In this study, both experimental and numerical methods are employed to investigate the coal drawing from thick steep seam with longwall top coal caving mining. A series of analyses is performed to investigate the features of the drawing body, the distribution of top coal recovery ratio and the shape of the rock flow under steep conditions. The results indicate that the drawing body of top coal develops prior to upper side of the panel face obviously, and the top coal in the central part of the panel has a higher recovery ratio than that in the lower and upper parts in steep coal seam with caving mining method. The flow paths of the fragmented top coal are nearly straight lines moving towards the drawing window, and the fastest path maintains a constant angle with the plumb line. The spatial shape of the rock flow indicates “bidirectional asymmetry,” which results from the presence of the shield beam and dip angle of the coal seam; thus, this is the root cause of the appearance of the drawing body’s prior development towards the upper side of the panel. The field observation data indicates the same distribution of top coal recovery as that in the physical experiment and numerical simulation. Furthermore, suggested measurements are proposed to improve top coal recovery in steep seam mining based on the engineering practice of Dayuan coal mine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号