首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   3篇
测绘学   10篇
大气科学   11篇
地球物理   14篇
地质学   35篇
海洋学   5篇
天文学   2篇
自然地理   6篇
  2022年   2篇
  2021年   6篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   5篇
  2011年   5篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1997年   3篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有83条查询结果,搜索用时 31 毫秒
41.
Gravel distributions within treethrow mounds and adjacent undisturbed soils in Wisconsin and Pennsylvania were examined to determine the pedoturbation effects of tree uprooting. Erosion of fine materials from the fresh root plate and subsequent treethrow mound leaves gravels as a lag deposit forming surface gravel armors. Continued slow erosion of remaining nongravelly materials diminishes topograhic expression of the mound. In time, gravel armors remain as the only evidence of past uprooting events.  相似文献   
42.
In this paper a finite element formulation for a linear viscoelastic ageing material is developed. It is shown that these equations can be solved in the from of an eigenvalue expansion thus reducing the problem to the solution of a set of Volterra Integral equations. An alternative method of solution based on expansion in terms of an operator related to Poisson's ratio is also developed and this solution method is found to significantly reduce the computational effort necessary in the solution of aproblem.  相似文献   
43.
Past research on the economic impacts of aclimate-induced sea level rise has been based on thegradual erosion of the shoreline, and humanadaptation. Erosion which is accelerated by sea levelrise may also increase the vulnerability to stormdamage by decreasing the distance between the shoreand structures, and by eroding protective coastalfeatures (dunes). We present methods of assessingthis storm damage in coastal regions where structuralprotection is not pursued. Starting from the boundingcases of no foresight and perfectforesight of Yohe et al. (1996), we use adisaggregated analysis which models the random natureof storms, and models market valuation and privateinvestor decisions dynamically. Using data from theNational Flood Insurance Program and a hypotheticalcommunity, we estimate that although the total stormdamage can be large, the increase in storm damageattributable to sea level rise is small (<5% oftotal sea level rise damages). These damages,however, could become more significant under otherreasonable assumptions or where dune erosion increasesstorm damage.  相似文献   
44.
The effects of climate change on drinking-waterborne cryptosporidiosis transmission in the United States are analyzed using an influence diagram representation of epidemic development. Results from a systematic qualitative analysis indicate that climate change will have little effect on cryptosporidiosis incidence if the United States continues to be wealthy and maintains its commitment to public health. The major impact will, instead, be the additional costs of adapting to new climate regimes in order to avoid drinking-waterborne disease risk. These costs, for the most part, will be from improved monitoring and treatment of drinking water. The consequences of disaster scenarios are also considered. These, too, suggest that climate change per se will be a poor predictor of waterborne cryptosporidiosis in countries with high standards of living. Rather, the risk of epidemics will depend on the interplay between population, public health investment, infrastructure maintenance, emergency planning/response capabilities, water-treatment technologies, drinking-water regulations, and climate.  相似文献   
45.
46.
47.
Solutions are presented for the behaviour of layered soil or rock deposits which contain a heat source. Such a problem arises when high level nuclear waste is placed in deep underground depositaries, as the waste continues to generate heat for many years after placement. This heating of the surrounding soil or rock may lead to expansion and cracking with subsequent contamination of ground water. Results are presented for heat soureces with different decay rates and for heat sources in layers of material with different coefficients of expansion. An example using realistic data for rock is also given. The solution method involves applying Fourier or Hankel transforms to the field quantities and this reduces the two-dimensional or axisymmetric problem to one involving a single spatial dimension. In cases where the soil or rock is horizontally layered, the method has great advantages over other numerical methods such as finite element or finite difference techniques, since little computer storage and data preparation time is required. Solution of the time-dependent problem is carried out by applying Laplace transforms to the field variables, obtaining solutions and then using numerical means to invert the transformed solutions. This enables easy solution of problems involving time-dependent (i.e. decaying) heat sources.  相似文献   
48.
New optically stimulated luminescence dating and Bayesian models integrating all legacy and BRITICE-CHRONO geochronology facilitated exploration of the controls on the deglaciation of two former sectors of the British–Irish Ice Sheet, the Donegal Bay (DBIS) and Malin Sea ice-streams (MSIS). Shelf-edge glaciation occurred ~27 ka, before the global Last Glacial Maximum, and shelf-wide retreat began 26–26.5 ka at a rate of ~18.7–20.7 m a–1. MSIS grounding zone wedges and DBIS recessional moraines show episodic retreat punctuated by prolonged still-stands. By ~23–22 ka the outer shelf (~25 000 km2) was free of grounded ice. After this time, MSIS retreat was faster (~20 m a–1 vs. ~2–6 m a–1 of DBIS). Separation of Irish and Scottish ice sources occurred ~20–19.5 ka, leaving an autonomous Donegal ice dome. Inner Malin shelf deglaciation followed the submarine troughs reaching the Hebridean coast ~19 ka. DBIS retreat formed the extensive complex of moraines in outer Donegal Bay at 20.5–19 ka. DBIS retreated on land by ~17–16 ka. Isolated ice caps in Scotland and Ireland persisted until ~14.5 ka. Early retreat of this marine-terminating margin is best explained by local ice loading increasing water depths and promoting calving ice losses rather than by changes in global temperatures. Topographical controls governed the differences between the ice-stream retreat from mid-shelf to the coast.  相似文献   
49.
The offshore sector around Shetland remains one of the least well-studied parts of the former British–Irish Ice Sheet with several long-standing scientific issues unresolved. These key issues include (i) the dominance of a locally sourced ‘Shetland ice cap’ vs an invasive Fennoscandian Ice Sheet; (ii) the flow configuration and style of glaciation at the Last Glacial Maximum (i.e. terrestrial vs marine glaciation); (iii) the nature of confluence between the British–Irish and Fennoscandian Ice Sheets; (iv) the cause, style and rate of ice sheet separation; and (v) the wider implications of ice sheet uncoupling on the tempo of subsequent deglaciation. As part of the Britice-Chrono project, we present new geological (seabed cores), geomorphological, marine geophysical and geochronological data from the northernmost sector of the last British–Irish Ice Sheet (north of 59.5°N) to address these questions. The study area covers ca. 95 000 km2, an area approximately the size of Ireland, and includes the islands of Shetland and the surrounding continental shelf, some of the continental slope, and the western margin of the Norwegian Channel. We collect and analyse data from onshore in Shetland and along key transects offshore, to establish the most coherent picture, so far, of former ice-sheet deglaciation in this important sector. Alongside new seabed mapping and Quaternary sediment analysis, we use a multi-proxy suite of new isotopic age assessments, including 32 cosmogenic-nuclide exposure ages from glacially transported boulders and 35 radiocarbon dates from deglacial marine sediments, to develop a synoptic sector-wide reconstruction combining strong onshore and offshore geological evidence with Bayesian chronosequence modelling. The results show widespread and significant spatial fluctuations in size, shape and flow configuration of an ice sheet/ice cap centred on, or to the east of, the Orkney–Shetland Platform, between ~30 and ~15 ka BP. At its maximum extent ca. 26–25 ka BP , this ice sheet was coalescent with the Fennoscandian Ice Sheet to the east. Between ~25 and 23 ka BP the ice sheet in this sector underwent a significant size reduction from ca. 85 000 to <50 000 km2, accompanied by several ice-margin oscillations. Soon after, connection was lost with the Fennoscandian Ice Sheet and a marine corridor opened to the east of Shetland. This triggered initial (and unstable) re-growth of a glaciologically independent Shetland Ice Cap ca. 21–20 ka BP with a strong east–west asymmetry with respect to topography. Ice mass growth was followed by rapid collapse, from an area of ca. 45 000 km2 to ca. 15 000 km2 between 19 and 18 ka BP , stabilizing at ca. 2000 km2 by ~17 ka BP. Final deglaciation of Shetland occurred ca. 17–15 ka BP , and may have involved one or more subsidiary ice centres on now-submerged parts of the continental shelf. We suggest that the unusually dynamic behaviour of the northernmost sector of the British–Irish Ice Sheet between 21 and 18 ka BP – characterized by numerous extensive ice sheet/ice mass readvances, rapid loss and flow redistributions – was driven by significant changes in ice mass geometry, ice divide location and calving flux as the glaciologically independent ice cap adjusted to new boundary conditions. We propose that this dynamism was forced to a large degree by internal (glaciological) factors specific to the strongly marine-influenced Shetland Ice Cap.  相似文献   
50.
Erosion processes in bedrock‐floored rivers shape channel cross‐sectional geometry and the broader landscape. However, the influence of weathering on channel slope and geometry is not well understood. Weathering can produce variation in rock erodibility within channel cross‐sections. Recent numerical modeling results suggest that weathering may preferentially weaken rock on channel banks relative to the thalweg, strongly influencing channel form. Here, we present the first quantitative field study of differential weathering across channel cross‐sections. We hypothesize that average cross‐section erosion rate controls the magnitude of this contrast in weathering between the banks and the thalweg. Erosion rate, in turn, is moderated by the extent to which weathering processes increase bedrock erodibility. We test these hypotheses on tributaries to the Potomac River, Virginia, with inferred erosion rates from ~0.1 m/kyr to >0.8 m/kyr, with higher rates in knickpoints spawned by the migratory Great Falls knickzone. We selected nine channel cross‐sections on three tributaries spanning the full range of erosion rates, and at multiple flow heights we measured (1) rock compressive strength using a Schmidt hammer, (2) rock surface roughness using a contour gage combined with automated photograph analysis, and (3) crack density (crack length/area) at three cross‐sections on one channel. All cross‐sections showed significant (p < 0.01 for strength, p < 0.05 for roughness) increases in weathering by at least one metric with height above the thalweg. These results, assuming that the weathered state of rock is a proxy for erodibility, indicate that rock erodibility varies inversely with bedrock inundation frequency. Differences in weathering between the thalweg and the channel margins tend to decrease as inferred erosion rates increase, leading to variations in channel form related to the interplay of weathering and erosion rate. This observation is consistent with numerical modeling that predicts a strong influence of weathering‐related erodibility on channel morphology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号