首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1731篇
  免费   86篇
  国内免费   38篇
测绘学   60篇
大气科学   130篇
地球物理   336篇
地质学   663篇
海洋学   121篇
天文学   400篇
综合类   10篇
自然地理   135篇
  2023年   5篇
  2022年   10篇
  2021年   43篇
  2020年   38篇
  2019年   42篇
  2018年   48篇
  2017年   47篇
  2016年   60篇
  2015年   49篇
  2014年   52篇
  2013年   96篇
  2012年   67篇
  2011年   78篇
  2010年   87篇
  2009年   127篇
  2008年   93篇
  2007年   108篇
  2006年   89篇
  2005年   59篇
  2004年   84篇
  2003年   57篇
  2002年   60篇
  2001年   53篇
  2000年   45篇
  1999年   38篇
  1998年   41篇
  1997年   16篇
  1996年   18篇
  1995年   25篇
  1994年   16篇
  1992年   15篇
  1991年   6篇
  1989年   11篇
  1988年   7篇
  1987年   13篇
  1986年   9篇
  1984年   10篇
  1983年   10篇
  1982年   11篇
  1981年   16篇
  1980年   11篇
  1979年   5篇
  1978年   6篇
  1977年   10篇
  1976年   5篇
  1975年   7篇
  1974年   6篇
  1973年   5篇
  1972年   5篇
  1969年   6篇
排序方式: 共有1855条查询结果,搜索用时 15 毫秒
921.
In this paper, a method for designing supplemental brace–damper systems in single‐degree‐of‐freedom (SDOF) structures is presented. We include the effects of the supporting brace stiffness in the dynamic response by using a viscoelastic Maxwell model. On the basis of the study of an SDOF under ground excitation, we propose a noniterative design procedure for simultaneously specifying both the damper and the brace while assuring a desired structural performance. It is shown that to increase the damper size beyond the value delivered by the proposed criteria will not provide any improvement but actually worsen the structural response. The design method presented here shows excellent agreement with the FEMA 273 design approach but offers solutions closer to optimality. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
922.
Saturn’s moon Rhea is thought to be a simple plasma absorber, however, energetic particle observations in its vicinity show a variety of unexpected and complex interaction features that do not conform with our current understanding about plasma absorbing interactions. Energetic electron data are especially interesting, as they contain a series of broad and narrow flux depletions on either side of the moon’s wake. The association of these dropouts with absorption by dust and boulders orbiting within Rhea’s Hill sphere was suggested but subsequently not confirmed, so in this study we review data from all four Cassini flybys of Rhea to date seeking evidence for alternative processes operating within the moon’s interaction region. We focus on energetic electron observations, which we put in context with magnetometer, cold plasma density and energetic ion data. All flybys have unique features, but here we only focus on several structures that are consistently observed. The most interesting common feature is that of narrow dropouts in energetic electron fluxes, visible near the wake flanks. These are typically seen together with narrow flux enhancements inside the wake. A phase-space-density analysis for these structures from the first Rhea flyby (R1) shows that Liouville’s theorem holds, suggesting that they may be forming due to rapid transport of energetic electrons from the magnetosphere to the wake, through narrow channels. A series of possibilities are considered to explain this transport process. We examined whether complex energetic electron drifts in the interaction region of a plasma absorbing moon (modeled through a hybrid simulation code) may allow such a transport. With the exception of several features (e.g. broadening of the central wake with increasing electron energy), most of the commonly observed interaction signatures in energetic electrons (including the narrow structures) were not reproduced. Additional dynamical processes, not simulated by the hybrid code, should be considered in order to explain the data. For the small scale features, the possibility that a flute (interchange) instability acts on the electrons is discussed. This instability is probably driven by strong gradients in the plasma pressure and the magnetic field magnitude: magnetometer observations show clearly signatures consistent with the (expected) plasma pressure loss due to ion absorption at Rhea. Another potential driver of the instability could have been gradients in the cold plasma density, which are, however, surprisingly absent from most crossings of Rhea’s plasma wake. The lack of a density depletion in Rhea’s wake suggests the presence of a local cold plasma source region. Hybrid plasma simulations show that this source cannot be the ionized component of Rhea’s weak exosphere. It is probably related to accelerated photoelectrons from the moon’s negatively charged surface, indicating that surface charging may play a very important role in shaping Rhea’s magnetospheric interaction region.  相似文献   
923.
Reducing soil erosion and sediment delivery into rivers is a major aim for land management in New Zealand. Therefore, it is important to identify areas of sediment generation and their relationship to in-stream suspended sediment concentrations and water quality attributes. It is possible to infer and assess sediment sources and dynamics using storm event suspended sediment concentration-discharge hysteresis shape and loop direction. Research in small catchments has achieved some success; however, research in larger (>103 km2) catchments has shown the inherent difficulty of interpreting hysteresis patterns at larger scales. In this paper, we use a nested, long-term suspended sediment monitoring program across a large catchment (3,903 km2: Manawatū in New Zealand) to address these challenges. We evaluate the hysteresis patterns of five major tributaries (subcatchment areas 329–1,298 km2) of the Manawatū River together with the hysteresis patterns at the gauged catchment outlet. Hysteresis patterns of the Manawatū subcatchments can be characterized as predominantly clockwise, that is, high hysteresis index (HI) value. Larger storms (discharge >2 × 107 m3) increase the likelihood of clockwise hysteresis directions, whereas smaller storms (discharge <2 × 107 m3) are more likely to be anticlockwise. The link between suspended sediment concentration-discharge hysteresis and subcatchment sediment sources becomes increasingly attenuated within the larger subcatchments. High antecedent discharge negatively correlates to HI values, suggesting conditions immediately before the storm have an influence on whether the catchment is “primed” or “exhausted” with available sediment. The different storm categories indicate that within this catchment, whereas hysteresis patterns vary due to the spatial origin of discharge and sediment to some extent, storm magnitude has a stronger impact on hysteresis dynamics than spatial origin.  相似文献   
924.
Phase equilibrium modelling of a conformable sequence of supracristal lithologies from the Bushmanland Subprovince of the Namaqua–Natal Metamorphic Complex (South Africa) reveals a disparity of some 60–70°C in estimated peak metamorphic temperature. Aluminous metapelites were equilibrated at ~770–790°C, whereas two‐pyroxene granulite and garnet–orthopyroxene–biotite gneiss record distinctly higher conditions of ~830–850°C. Semi‐pelite and Mg–Al‐rich gneisses yield poorly constrained estimates that span the range derived from other lithologies. All samples record peak pressure of ~5–6 kbar, and followed a roughly isobaric heating path from andalusite‐bearing greenschist/lower amphibolite facies conditions through a tight clockwise loop at near‐peak conditions, followed by near‐isobaric cooling. The disparity in peak temperatures appears to be robust, as the low‐variance assemblages in all samples reflect well‐known melting reactions that only occur over narrow temperature intervals. The stable coexistence of both products and reactants of these melting reactions indicates that they did not go to completion before metamorphism waned. Calculated pressure–enthalpy diagrams show that the melting reactions are strongly endothermic and therefore buffer temperature while heat is consumed by melting. Because the respective reactions occur at distinct PT conditions and have different reactant assemblages, individual lithologies are thermally buffered at different temperatures and to different degrees, depending on the occurrence and abundance of reactant minerals. Our calculations show that all lithologies received essentially the same suprasolidus heat budget of 19 ± 1 kJ/mol, which led to the manifestation of lower peak temperatures in the more fertile and strongly buffered aluminous metapelites compared with more refractory rock types. If little to no thermal communication is assumed, this implies that lithology exerts a first‐order control over the heating path and the peak temperature that can be attained for a specific heat budget. Our results caution that the metamorphic conditions derived from pelitic granulites should not be assumed or extrapolated to larger sections of an orogenic crust that consist of other, more refractory lithologies.  相似文献   
925.
The distribution of ice‐rafted detritus (IRD) is studied in three cores from the western Svalbard slope (1130–1880 m water depth, 76–78°N) covering the period 74–0 ka. The aim was to provide new insight into the dynamics of the Svalbard–Barents Sea Ice Sheet during Marine Isotope Stages (MIS) 4–1 to get a better understanding of ice‐sheet interactions with changes in ocean circulation and climate on orbital and millennial (Dansgaard–Oeschger events of stadial–interstadial) time scales. The results show that concentration, flux, composition and grain‐size of IRD vary with climate and ocean temperature on both orbital and millennial time scales. The IRD consists mainly of fragments of siltstones and mono‐crystalline transparent quartz (referred to as ‘quartz’). IRD dominated by siltstones has a local Svalbard–Barents Sea source, while IRD dominated by quartz is from distant sources. Local siltstone‐rich IRD predominates in warmer climatic phases (interstadials), while the proportion of allochthonous quartz‐rich IRD increases in cold phases (glacials and stadials/Heinrich events). During the Last Glacial Maximum and early deglaciation at 24–16.1 ka, the quartz content reached up to >90%. In warm climate, local iceberg calving apparently increased and the warmer ocean surface caused faster melting. During the glacial maxima (MIS 4 and MIS 2) and during cold stadials and Heinrich events, the local ice‐sheets must have been relatively stable with low ablation. During ice retreat phases of the MIS 4/3 and MIS 2/1 transitions, maxima in IRD deposition were dominated by local coarse‐grained IRD. These maxima correlate with episodes of climate warming, indicating a rapid, stepwise retreat of the Svalbard–Barents Sea Ice Sheet in phase with millennial‐scale climate oscillations.  相似文献   
926.
927.
Prehistoric storm records are relatively scarce in most parts of the world. This article presents storm records derived from coral rubble‐based geological archives of the Houtman Abrolhos Archipelago located off the west coast of Australia, where the southernmost coral reefs of the Indian Ocean are found. Winter storm swell from the circum‐Antarctic ‘Brave Westerlies’, as well as tropical cyclone waves, have left numerous ridge systems on dozens of islands of the archipelago, all composed of coral rubble from adjacent reefs. At three islands, seven ridge systems were dated by three different methods: U‐series (68 dates), radiocarbon (64 dates), electron spin resonance (7 dates); 139 radiometric dates span the last 5500 years of the Holocene. In contrast to the geomorphological interpretation, the age sequences show ‘inversions’, hiatuses and different ages for the same ridge, all pointing to complicated ridge formation processes. Time gaps, some exceeding 1000 years, are interpreted as phases of erosion and not as phases without storm activity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
928.
Northern peatlands are a vital component of the global carbon cycle, containing large stores of soil organic carbon and acting as a long‐term carbon sink. Moss productivity is an important factor in determining whether these wetlands will retain this function under future climatic conditions. Research on unsaturated water flow in peatlands, which controls moss productivity during periods of evaporative stress, has focused on relatively deep bog systems. However, shallower peatlands and marginal connective wetlands can be essential components of many landscape mosaics. In order to better understand factors influencing moss productivity, water balance simulations using HYDRUS‐1D were run for different soil profile depths, compositions, and antecedent moisture conditions. Our results demonstrate a bimodal distribution of peatland realizations, either primarily conserving water by limiting evapotranspiration or maximizing moss productivity. For sustained periods of evaporative stress, both deep water storage and a shallow initial water table delay the onset of high vegetative stress, thus maximizing moss productivity. A total depth of sand and peat of 0.8 m is identified as the threshold above which increasing peat depth has no effect on changing vegetative stress response. In contrast, wetlands with shallow peat deposits (less than 0.5 m thick) are least able to buffer prolonged periods of evaporation due to limited labile water storage and will thus quickly experience vegetative stress and so limit evaporation and conserve water. With a predicted increase in the frequency and size of rain events in continental North America, the moss productivity of shallow wetland systems may increase, but also greater moisture availability will increase the likelihood they remain as wetlands in a changing climate.  相似文献   
929.
The Battle of Messines (Wytschaete Bogen) of June 1917 is hailed as a triumph of military geology, with the simultaneous explosion of some 19 mines leading to the Allied destruction of the German frontline positions. This story is well known and rightly celebrated; but less well understood and often overshadowed by this success is the story of the effectiveness of the German fortress positions. These were constructed in late 1914 in order to maintain the strategic aim of holding the Allies in the west while pressing the Russians through a series of offensives in east. In this, they were highly effective, even in the face of continuous Allied bombardment. This article seeks to redress this unbalance in our understanding, drawing on archaeological evidence and archival resources to present a clearer picture of the nature of the German positions.  相似文献   
930.
New measurements of mass-dependent calcium isotope effects in meteorites, lunar and terrestrial samples show that Earth, Moon, Mars, and differentiated asteroids (e.g., 4-Vesta and the angrite and aubrite parent bodies) are indistinguishable from primitive ordinary chondritic meteorites at our current analytical resolution (± 0.07‰ SD for the 44Ca/40Ca ratio). In contrast, enstatite chondritic meteorites are slightly enriched in heavier calcium isotopes (ca. + 0.5‰) and primitive carbonaceous chondritic meteorites are depleted in heavier calcium isotopes (ca. ? 0.5‰). The calcium isotope effects cannot be easily ascribed to evaporation or intraplanetary differentiation processes. The isotopic variations probably survive from the earliest stages of nebular condensation, and indicate that condensation occurred under non-equilibrium (undercooled nebular gas) conditions. Some of this early high-temperature calcium isotope heterogeneity is recorded by refractory inclusions (Niederer and Papanastassiou, 1984) and survived in planetesimals, but virtually none of it survived through terrestrial planet accretion. The new calcium isotope data suggest that ordinary chondrites are representative of the bulk of the refractory materials that formed the terrestrial planets; enstatite and carbonaceous chondrites are not. The enrichment of light calcium isotopes in bulk carbonaceous chondrites implies that their compositions are not fully representative of the solar nebula condensable fraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号