全文获取类型
收费全文 | 58篇 |
免费 | 3篇 |
专业分类
大气科学 | 8篇 |
地球物理 | 15篇 |
地质学 | 24篇 |
海洋学 | 3篇 |
天文学 | 10篇 |
自然地理 | 1篇 |
出版年
2020年 | 2篇 |
2019年 | 4篇 |
2018年 | 1篇 |
2017年 | 5篇 |
2016年 | 2篇 |
2015年 | 1篇 |
2014年 | 1篇 |
2013年 | 2篇 |
2012年 | 4篇 |
2011年 | 3篇 |
2010年 | 2篇 |
2009年 | 3篇 |
2008年 | 2篇 |
2007年 | 6篇 |
2006年 | 6篇 |
2004年 | 1篇 |
2003年 | 2篇 |
2002年 | 1篇 |
2001年 | 2篇 |
2000年 | 1篇 |
1998年 | 2篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1988年 | 1篇 |
1984年 | 1篇 |
1980年 | 2篇 |
1978年 | 1篇 |
排序方式: 共有61条查询结果,搜索用时 15 毫秒
11.
Kathryn L. Linge L. Paul Bédard Roxana Bugoi Jacinta Enzweiler Klaus Peter Jochum Rüdiger Kilian Jingao Liu Johanna Marin‐Carbonne Silke Merchel Frans Munnik Luiz F.G. Morales Claire Rollion‐Bard A. Kate Souders Paul J. Sylvester Ulrike Weis 《Geostandards and Geoanalytical Research》2017,41(4):493-562
This GGR biennial critical review covers developments and innovations in key analytical methods published since January 2014, relevant to the chemical, isotopic and crystallographic characterisation of geological and environmental materials. In nine selected analytical fields, publications considered to be of wide significance are summarised, background information is provided and their importance evaluated. In addition to instrumental technologies, this review also presents a summary of new developments in the preparation and characterisation of rock, microanalytical and isotopic reference materials, including a précis of recent changes and revisions to ISO guidelines for reference material characterisation and reporting. Selected reports are provided of isotope ratio determinations by both solution nebulisation MC‐ICP‐MS and laser ablation‐ICP‐MS, as well as of radioactive isotope geochronology by LA‐ICP‐MS. Most of the analytical techniques elaborated continue to provide new applications for geochemical analysis; however, it is noted that instrumental neutron activation analysis has become less popular in recent years, mostly due to the reduced availability of nuclear reactors to act as a neutron source. Many of the newer applications reported here provide analysis at increasingly finer resolution. Examples include atom probe tomography, a very sensitive method providing atomic scale information, nanoscale SIMS, for isotopic imaging of geological and biological samples, and micro‐XRF, which has a spatial resolution many orders of magnitude smaller than conventional XRF. 相似文献
12.
Thomas Smith David L. Cook Silke Merchel Stefan Pavetich Georg Rugel Andreas Scharf Ingo Leya 《Meteoritics & planetary science》2019,54(12):2951-2976
We measured the He, Ne, and Ar isotopic concentrations and the 10Be, 26Al, 36Cl, and 41Ca concentrations in 56 iron meteorites of groups IIIAB, IIAB, IVA, IC, IIA, IIB, and one ungrouped. From 41Ca and 36Cl data, we calculated terrestrial ages indistinguishable from zero for six samples, indicating recent falls, up to 562 ± 86 ka. Three of the studied meteorites are falls. The data for the other 47 irons confirm that terrestrial ages for iron meteorites can be as long as a few hundred thousand years even in relatively humid conditions. The 36Cl‐36Ar cosmic ray exposure (CRE) ages range from 4.3 ± 0.4 Ma to 652 ± 99 Ma. By including literature data, we established a consistent and reliable CRE age database for 67 iron meteorites. The high quality of the CRE ages enables us to study structures in the CRE age histogram more reliably. At first sight, the CRE age histogram shows peaks at about 400 and 630 Ma. After correction for pairing, the updated CRE age histogram comprises 41 individual samples and shows no indications of temporal periodicity, especially not if one considers each iron meteorite group separately. Our study contradicts the hypothesis of periodic GCR intensity variations (Shaviv 2002, 2003), confirming other studies indicating that there are no periodic structures in the CRE age histogram (e.g., Rahmstorf et al. 2004; Jahnke 2005). The data contradict the hypothesis that periodic GCR intensity variations might have triggered periodic Earth climate changes. The 36Cl‐36Ar CRE ages are on average 40% lower than the 41K‐K CRE ages (e.g., Voshage 1967). This offset can either be due to an offset in the 41K‐K dating system or due to a significantly lower GCR intensity in the time interval 195–656 Ma compared to the recent past. A 40% lower GCR intensity, however, would have increased the Earth temperature by up to 2 °C, which seems unrealistic and leaves an ill‐defined 41K‐K CRE age system the most likely explanation. Finally, we present new 26Al/21Ne and 10Be/21Ne production rate ratios of 0.32 ± 0.01 and 0.44 ± 0.03, respectively. 相似文献
13.
Silke WIEPRECHT Department of Geology Groundwater Morphology German Federal Institute of Hydrology Koblenz Germany 《国际泥沙研究》2001,16(2)
1 INTRODUCTIONFor the pmpose of river restoration of the river Isar in the city area of Munich several inveshgationswere cAned out at the InshtUte for Hydrosciences, German Armed Forces University Munich. The calculation ofwater level for the differnt planned variants were realized by a 2d mathematical model. Although thesesimulahons were a very helpfol basis for fuIther planing, a physical model was constrUcted in order toinvestigate detalled problems.The main interest was focussed … 相似文献
14.
George Luiz Luvizotto Thomas Zack Silke Triebold Hilmar von Eynatten 《Mineralogy and Petrology》2009,97(3-4):233-249
Metamorphic textures in medium-grade (~500–550°C) metasedimentary rocks from the Erzgebirge give evidence of prograde rutile crystallization from ilmenite. Newly-crystallized grains occur as rutile-rich polycrystalline aggregates that pseudomorph the shape of the ilmenites. In-situ trace element data (EMP and SIMS) show that rutiles from the higher-grade samples record large scatter in Nb content and have Nb/Ti ratios higher than coexisting ilmenite. This behavior can be predicted using prograde rutile crystallization from ilmenite and indicates that rutiles are reequilibrating their chemistry with remaining ilmenites. On the contrary, rutiles from the lowest grade samples (~480°C) have Nb/Ti ratios that are similar to the ones in ilmenite. Hence, rutiles from these samples did not equilibrate their chemistry with remaining ilmenites. Our data suggest that temperature may be one of the main factors determining whether or not the elements are able to diffuse between the phases and, therefore, reequilibrate. Newly-crystallized rutiles yield temperatures (from ~500 to 630°C, Zr-in-rutile thermometry) that are in agreement with the metamorphic conditions previously determined for the studied rocks. In quartzites from the medium-grade domain (~530°C), inherited detrital rutile grains are detected. They are identified by their distinct chemical composition (high Zr and Nb contents) and textures (single grains surrounded by fine grained ilmenites). Preliminary calculation, based on grain size distribution of rutile in medium-grade metapelites and quartzites that occur in the studied area, show that rutiles derived from quartzites can be anticipated to dominate the detrital rutile population, even if quartzites are a minor component of the exposure. 相似文献
15.
16.
Solutions of the sine-Poisson equation are used to construct a class of isothermal magnetostatic atmospheres, with one ignorable coordinate corresponding to a uniform gravitational field in a plane geometry. The distributed current in the model j is directed along the x-axis, where x is the horizontal ignorable coordinate. The current j varies as the sine of the magnetostatic potential and falls off exponentially with distance vertical to the base with an e-folding distance equal to the gravitational scale height. We investigate in detail solutions for the magnetostatic potential A corresponding to the one-soliton, two soliton, and breather solutions of the sine-Gordon equation. Depending on the values of the free parameters in the soliton solutions, horizontally, periodic magnetostatic structures are obtained possessing either (a) a single X-type neutral point, (b) multiple neutral X-points, or (c) solutions without X-points. The solution cases (b) and (c) contain two families of intersecting current sheets, in which the line of intersection forms flux concentration points (or singularities) for the magnetic field. The solutions illustrate the contribution of the anisotropic J × B force (B, magnetic field induction), the gravitational force, and the gas pressure gradient to the force balance. 相似文献
17.
Calcium isotope record of Phanerozoic oceans: Implications for chemical evolution of seawater and its causative mechanisms 总被引:1,自引:0,他引:1
Juraj Farkaš Florian Böhm John Blenkinsop Robert van Geldern Silke Voigt 《Geochimica et cosmochimica acta》2007,71(21):5117-5134
A total of 280 brachiopods of Ordovician to Cretaceous age, complemented by published data from belemnites and planktonic foraminifera, are used to reconstruct the evolution of calcium isotope composition of seawater (δ44/40CaSW) over the Phanerozoic. The compiled δ44/40CaSW record shows a general increase from ∼1.3‰ (NIST SRM 915a) at the beginning of the Ordovician to ∼2‰ at present. Superimposed on this trend is a major long-term positive excursion from the Early Carboniferous to Early Permian as well as several short-term, mostly negative, oscillations.A numerical model of the global cycles of calcium, carbon, magnesium and strontium was used to estimate whether the recorded δ44/40CaSW variations can be explained by varying magnitudes of input and output fluxes of calcium to the oceans. The model uses the record of marine 87Sr/86Sr ratios as proxy for seafloor spreading rates, a record of oceanic Mg/Ca ratios to estimate rates of dolomite formation, and reconstructed atmospheric CO2, discharge and erosion rates to estimate continental weathering fluxes.The model results indicate that varying magnitudes of the calcium input and output fluxes cannot explain the observed δ44/40CaSW trends, suggesting that the isotope signatures of these fluxes must also have changed. As a possible mechanism we suggest variable isotope fractionation in the sedimentary output flux controlled by the dominant mineralogy in marine carbonate deposits, i.e. the oscillating ‘calcite-aragonite seas’. The ultimate control of the calcium isotope budget of the Phanerozoic oceans appears to have been tectonic processes, specifically variable rates of oceanic crust production that modulated the hydrothermal calcium flux and the oceanic Mg/Ca ratio, which in turn controlled the dominant mineralogy of marine carbonates, hence the δ44/40CaSW. As to the causes of the short-term oscillations recorded in the secular δ44/40CaSW trend, we tentatively propose that these are related to variable rates of dolomite formation and/or to changing chemical composition of the riverine flux, in particular and ratios, induced by variable proportions of silicate vs. carbonate weathering rates on the continents. 相似文献
18.
Sea-level change, carbon cycling and palaeoclimate during the Late Cenomanian of northwest Europe; an integrated palaeoenvironmental analysis 总被引:3,自引:1,他引:3
A new high resolution sea-level curve for the Late Cenomanian M. geslinianum Zone has been generated using sequence stratigraphic analysis on transects through the margins of the Anglo-Paris Basin in the UK and Saxony Basin in Germany. Transgressive sediments that bury a rocky shoreline in the Dresden area have proved particularly useful in determining both the absolute amount of sea-level change and the rate of rise. After a brief fall at the base of the M. geslinianum Zone, sea level rose rapidly through the higher part of the zone, resulting in an overall short term eustatic rise of 22–28 m. Biostratigraphy and carbon isotope stratigraphy have enabled detailed correlations to be made between marginal locations and thick, relatively complete, basinal successions. The basinal successions at Eastbourne, UK, and Gröbern, Germany, provide both geochemical proxies for palaeoenvironmental change, including oxygen and carbon isotope records, and an orbital timescale graduated in precession and eccentricity cycles. Integration of the sea-level history with palaeoclimate evolution, palaeoceanography and changes in carbon cycling allows a detailed reconstruction of events during the Late Cenomanian. Orbital forcing on long eccentricity maxima provides the underlying drive for these changes, but amplification by tectonic events and feedback mechanisms augmented the orbital effects and made the Cenomanian/Turonian Boundary Event distinctive. In particular, variations in atmospheric CO2 caused by oceanic drawdown and a brief period of intense volcanic outgassing resulted respectively in short term cooling and warming events. The magnitude and high rates (up to 1 m/1 kyr) of sea-level rise are diagnostic of glacioeustasy, however improbable this may appear at the height of the Cretaceous greenhouse. 相似文献
19.
Lorenz Wüthrich Ezequiel Garcia Morabito Jana Zech Mareike Trauerstein Heinz Veit Christian Gnägi Silke Merchel Andreas Scharf Georg Rugel Marcus Christl Roland Zech 《Swiss Journal of Geoscience》2018,111(1-2):295-303
The combined Rhone and Aare Glaciers presumably reached their last glacial maximum (LGM) extent on the Swiss Plateau prior to 24 ka. Two well-preserved, less extensive moraine stades, the Gurten and Bern Stade, document the last deglaciation of the Aare Valley, yet age constraints are very scarce. In order to establish a more robust chronology for the glacial/deglacial history of the Aare Valley, we applied 10Be surface exposure dating on eleven boulders from the Gurten and Bern Stade. Several exposure ages are of Holocene age and likely document post-depositional processes, including boulder toppling and quarrying. The remaining exposure ages, however yield oldest ages of 20.7 ± 2.2 ka for the Gurten Stade and 19.0 ± 2.0 ka for the Bern Stade. Our results are in good agreement with published chronologies from other sites in the Alps. 相似文献
20.
G. P. Zank 《Astrophysics and Space Science》1988,140(2):301-324
A multiple scales analysis is used to derive a mixed Burgers-Korteweg-de Vries (BKdV) equation in the long wavelength regime for a two-fluid MHD model used to describe cosmic-ray acceleration by the first-order Fermi process in astrophysical shocks. The BKdV equation describes the time evolution of weak shocks in the theory of diffusive shock acceleration for all possible cosmic-ray pressures. Previous work on weak shocks in the cosmic-ray MHD model has assumed that dissipation alone is sufficient to balance nonlinearity, but, as cosmic-ray pressures become small, the weak shock becomes discontinous. By including Hall current effects into the MHD model, the low cosmic-ray pressure limit leads smoothly into solitary wave behaviour. For low cosmic-ray pressures, the shock has a downstream oscillatory precursor which is smoothed into the standard Taylor shock profile with increasing cosmic-ray pressure. As a by-product of the perturbation analysis, a dissipative KdV equation is derived. In conclusion, dispersive effects on Alfvén waves are discussed and a modulational stability analysis is presented. 相似文献