首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4161篇
  免费   824篇
  国内免费   1026篇
测绘学   299篇
大气科学   860篇
地球物理   1196篇
地质学   2072篇
海洋学   508篇
天文学   145篇
综合类   426篇
自然地理   505篇
  2024年   13篇
  2023年   59篇
  2022年   173篇
  2021年   227篇
  2020年   149篇
  2019年   198篇
  2018年   201篇
  2017年   216篇
  2016年   239篇
  2015年   207篇
  2014年   247篇
  2013年   240篇
  2012年   226篇
  2011年   218篇
  2010年   200篇
  2009年   234篇
  2008年   231篇
  2007年   202篇
  2006年   139篇
  2005年   121篇
  2004年   139篇
  2003年   184篇
  2002年   199篇
  2001年   176篇
  2000年   185篇
  1999年   210篇
  1998年   135篇
  1997年   162篇
  1996年   163篇
  1995年   133篇
  1994年   104篇
  1993年   98篇
  1992年   78篇
  1991年   55篇
  1990年   59篇
  1989年   42篇
  1988年   35篇
  1987年   23篇
  1986年   18篇
  1985年   15篇
  1984年   12篇
  1983年   8篇
  1982年   9篇
  1981年   7篇
  1980年   5篇
  1977年   2篇
  1962年   4篇
  1958年   4篇
  1957年   2篇
  1941年   1篇
排序方式: 共有6011条查询结果,搜索用时 31 毫秒
751.
“黄苔”是丝状绿藻大量增殖并漂浮聚集在水面的一种藻类水华,是乌梁素海面临的重大水环境问题之一。本研究基于文献数据整合和Landsat TM/OLI系列卫星影像反演,追溯了乌梁素海近35年(1986—2021年)的水质变化和“黄苔”暴发历程,通过相关性分析和多元线性回归等方法,分析了乌梁素海“黄苔”暴发的年际影响因子。乌梁素海水体化学需氧量、总氮(TN)、总磷(TP)浓度在年尺度上呈下降趋势,但仍处于富营养状态(TLI(∑)>50)。相关性分析结果表明,乌梁素海“黄苔”暴发面积与TP、TN、氨氮、气温呈显著正相关,与出水量、风速、沉水植被面积、入水量呈显著负相关;多元线性回归结果表明,沉水植被面积和出水量是影响乌梁素海“黄苔”暴发面积的主要因子。生态补水工程的实施增加了乌梁素海出入水量,降低了水体TP、TN浓度,也造成沉水植被退化,使“黄苔”暴发的扩张趋势得以遏制。然而,乌梁素海现有营养条件、基质条件仍适宜附着藻生长和“黄苔”暴发。在全球气候变化背景下,气温升高和风力减弱可能会加剧这一现象。建议采取多种措施以防控乌梁素海“黄苔”暴发,如生态补水、外源营养盐管控、沉水植被调控、引水活...  相似文献   
752.
Models of land use change are useful tools for un-derstanding the analysis of the cause and conse-quences of land use changes, assessing the impacts of land use system on ecological system and supporting land use planning and policy[1,2]. Modeling land use scenario changes and its potential impacts on the structure and function of the ecosystem in the typical regions are regarded as one of the good ways to un-derstand the interactive mechanism between land use system and ecological system[3―10…  相似文献   
753.
Active seismic sources are critical for obtaining high resolution images of the subsurface. For active imaging in urban areas, environment friendly and green seismic sources are required. In present work, we introduce a new type of green active source based on the gaseous detonation of methane and oxygen. When fired in a closed container, the chemical reaction, i.e. gaseous detonation, will produce high pressure air over 150MPa. Seismic waves are produced when high pressure air is quickly released to impact the surroundings. The first field experiment of this active source was carried out in December, 2017 in Jingdezhen, Jiangxi Province, where a series of active sources were excited to explore their potential in mine exploration. In current work, we analyzed the seismic waves recorded by near-field accelerators and a dense short-period seismic array and compared them with those from a mobile airgun source, another kind of active source by releasing high pressure air into water. The results demonstrate that it can be used for high resolution near surface imaging. Firstly, the gaseous detonation productions are harmless CO2 and water, making it a green explosive source. Secondly, the dominant seismic frequencies are 10-80Hz and a single shot can be recorded up to 15km, making it suitable for local structure investigations. Thirdly, it can be excited in vertical wells, similar to traditional powder explosive sources. It can also act as an additional on-land active source to airgun sources, which requires a suitable water body as intermediate media to generate repeating signals. Moreover, the short duration and high frequency signature of the source signals make it safe with no damage to nearby buildings. These make it convenient to excite in urban areas. As a new explosive source, the excitation equipment and conditions, such as gas ratio, sink depth and air-releasing directions, need further investigation to improve seismic wave generation efficiency.  相似文献   
754.
Soil erodibility is an essential parameter used in soil erosion prediction. This study selected the Liangshan town watershed to quantify variation in the vertical zonality of rill erodibility (kr) in China's ecologically fragile Hengduan Mountains. Soil types comprised of yellow–brown (soil A), purple (soil B), and dry-red (soil C) in a descending order of occurrence from the summit to the valley, which roughly corresponds to the vertical climate zone (i.e. cool-high mountain, warm-low mountain, and dry-hot valley sections) of the study area. With elevation, vertical soil zonality varied in both soil organic matter (SOM) content and soil particle-size fractions. A series of rill erosion-based scour experiments were conducted, using water discharge rates of 100, 200, 300, 400, 500, and 600 mL min-1. Additionally, detachment rates (Dr) were measured under three hydrological conditions (the drainage, saturation, and seepage treatments). Results show that both Dr and flow shear stress (Ʈ) values increased as discharge increased. As elevation increased, the kr values decreased, while the vertical zonality of critical shear stress (Ʈc) values showed no obvious variation. The highest kr values were observed during the seepage treatment, followed by the saturation treatment then drainage treatment, indicating that variation in vertical hydraulic gradients could significantly alter kr values. This study also found that land-use types could also alter kr and Ʈc values. Further research, however, is necessary to better quantify the effects of subsurface hydrological conditions and land-use types on kr under different soil zonalities in China's Hengduan Mountains. © 2018 John Wiley & Sons, Ltd.  相似文献   
755.
选取乌加河地震台2015-2018年地电阻率观测资料,分析数据异常变化,结合观测环境及实地调查,发现存在降雨、雷电、金属管线、农田灌溉、设备漏电等影响因素,对比分析并总结各类干扰曲线形态、变化幅度、影响时间、干扰频次等特征,以便正确认识并排除地电阻率干扰,为地震异常信息识别提供帮助。  相似文献   
756.
Variations in carbon (C) and nitrogen (N) of the vegetation in a Tamarix chinensis coastal wetland located in Laizhou Bay, China, are analyzed. It is found that T. chinensis accumulates more C and N than the surrounding herbs, and it allocates more C and N in the aboveground parts but less in the roots. Branches store more C, whereas leaves and flowers accumulate more N than other tissues. The C and N contents in the aboveground parts of T. chinensis are mainly influenced by pH, electrical conductivity (EC), water content, and clay content in the top 100 cm of soil as well as the distance from the sea. For the herbs, their C contents vary little in the supratidal zone, but they are higher than those in the intertidal zone. However, N contents in the herbs are higher in the aboveground parts and varied among different communities. The contents of C and N in the herbs are affected by EC, water content as well as the contents of organic C and total nitrogen (TN) in the top 10 cm of soil. The findings confirm that increasing the biomass of T. chinensis is an effective way to increase C sequestration in temperate coastal wetland.  相似文献   
757.
收集2008—2016年山西地震台网记录的震中距30°—90°范围内1 253个远震事件波形,拾取7 600余条高质量P波初至到时,使用IASP91模型计算相对到时残差,分析残差水平分布特征,结果显示:①以山西地区中部的山西断裂带为界,西部地震台站记录的P波初至主要表现为早到时,东部位于大同火山区的地震台站记录则主要表现为晚到时;②位于山西断裂带内部的地震台站记录的P波初至主要表现为早到时,残差水平显著低于西部地震台站;③研究区P波到时整体呈现自西向东逐渐由早到晚的分布特征。推测山西断裂带西部地区下方可能存在高速异常结构,山西断裂带内部及大同火山区下方可能存在低速异常结构。  相似文献   
758.
The western China lies in the convergence zone between Eurasian and Indian plates. It is an ideal place to study the lithosphere dynamics and tectonic evolutions on the continental Earth. The lithospheric strength is a key factor in controlling the lithosphere dynamics and deformations. The effective elastic thickness (Te) of the lithosphere can be used to address the lithospheric strength. Previous researchers only used one of the admittance or coherence methods to investigate the Te in the western China. Moreover, most of them ignored the internal loads of the lithosphere during the Te calculation, which can produce large biases in the Te estimations. To provide more reliable Te estimations, we used a new joint inversion method that integrated both admittance and coherence techniques to compute the Te in this study, with the WGM2012 gravity data, the ETOPO1 topographic data, and the Moho depths from the CRUST1.0 model. The internal loads are considered and investigated using the load ratio (F). Our results show that the joint inversion method can yield reliable Te and F values. Based on the analysis of Te and F distributions, we suggest (1) the northern Tibetan Plateau could be the front edge of the plate collision of Eurasian and Indian plates; (2) the southern and part of central Tibetan Plateau have a strong lithospheric mantle related to the rigid underthrusting Indian plate; (3) the southeastern Tibetan Plateau may be experiencing the delamination of lithosphere and upwelling of asthenosphere.  相似文献   
759.
Wang  Jianglin  Yang  Bao  Zheng  Jingyun  Zhang  Xuezhen  Wang  Zhiyuan  Fang  Miao  Shi  Feng  Liu  Jingjing 《中国科学:地球科学(英文版)》2020,63(8):1126-1143
The temperature variability over multidecadal and longer timescales(e.g., the cold epochs in the late 15 th, 17 th, and early 19 th centuries) is significant and dominant in the millennium-long, large-scale reconstructions and model simulations;however, their temporal patterns in the reconstructed and simulated temperature series are not well understood and require a detailed assessment and comparison. Here, we compare the reconstructed and simulated temperature series for the Northern Hemisphere(NH) at multidecadal and longer-term timescales(30 years) by evaluating their covariance, climate sensitivity and amplitude of temperature changes. We found that covariances between different reconstructions or between reconstructions and simulations are generally high for the whole period of 850–1999 CE, due to their similar long-term temporal patterns. However,covariances between different reconstructions or between reconstructions and simulations steadily decline as time series extends further back in time, becoming particularly small during Medieval times. This is related to the large uncetainties in the reconstructions caused by the decreased number of proxy records and sample duplication during the pre-instrumental periods.Reconstructions based solely on tree-ring data show higher skill than multiproxy reconstructions in capturing the amplitude of volcanic cooling simulated by models. Meanwhile, climate models have a shorter recovery(i.e., lag) in response to the cooling caused by volcanic eruptions and solar activity minima, implying the lack of some important feedback mechanisms between external forcing and internal climate processes in climate models. Amplitudes of temperature variations in the latest published tree-ring reconstructions are comparable to those of the multiproxy reconstructions. We found that the temperature difference between the Medieval Climate Anomaly(950–1250 CE) and the Little Ice Age(1450–1850 CE) is generally larger in proxybased reconstructions than in model simulations, but the reason is unclear.  相似文献   
760.
Channel change to regulated flows along large lowland rivers with cohesive bank materials has been investigated on the lower Welsh Dee, including the tidally influenced reach. Reduction of channel width has involved the formation of a 5–40m wide discontinuous bench, often linking ‘point’ and ‘concave’ locations. Map evidence shows that wide benches occur where historically the channel had migrated laterally; narrow benches were found at stable channel locations. Auger cores of the bench deposits clearly differentiated the two contrasting depositional environments within meandering rivers: ‘point bench’ and ‘concave bench’. Around an individual bend a morphologically continuous bench showed a gradient in sediment characteristics from coarser sediments (point locations) to finer organic deposits (concave locations); it also showed a topographic gradient, gaining 0.5m in elevation around the bend suggesting that bench accretion at concave locations is faster than at point locations in fluvially dominated reaches. Such patterns are suggested to have important implications for riparian ecosystems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号