首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   2篇
测绘学   1篇
大气科学   3篇
地球物理   10篇
地质学   18篇
海洋学   2篇
天文学   4篇
自然地理   8篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2011年   3篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   5篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1966年   1篇
排序方式: 共有46条查询结果,搜索用时 109 毫秒
41.
This study uses stable isotopes and major ions to examine the seasonal evolution of penitentes on the surface of Tapado Glacier, in the Norte Chico region of the Chilean Andes. A snow pit was sampled in November 2011, and penitentes were sampled during the summer (December 2011 and January 2012). The major ion load of the winter snowpack is dominated by Ca2+ (60%), SO42? (16%) and NO3? (13%), and there is little influence from marine air masses at the site, with most SO42?, Mg2+, Ca2+ and Na+, derived from non‐sea salt sources. During the early ablation season we observe increases in stable isotope ratios and major ion concentrations (particularly lithic ions Na+, Mg2+ and Ca2+) in the upper reaches of penitentes, which is attributed to sublimation and the aeolian deposition of dust particles. In the late‐summer, melt replaces sublimation as the dominant ablation process and results in smoothing of the stable isotope profile and the elution of major ions within the penitente snow and ice matrix. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
42.
Perthitic alkali feldspar primocrysts in layered syenites in the Klokken intrusion in South Greenland, underwent dissolution–reprecipitation reactions in a circulating post-magmatic aqueous fluid at ~450°C, and are to a large degree pseudomorphs. These ‘mutual replacement’ reactions provide a perfect natural experiment with which to study trace element partitioning between sodium and potassium feldspars growing simultaneously. The reactant ‘phase’ was a cryptoperthitic feldspar consisting of low albite and low microcline in a coherent sub-μm ‘braid’ intergrowth and the product phases were ‘strain-free’ incoherent subgrains of low albite and low microcline forming microporous patch perthites on scales up to 200 μm. The driving force for the reaction was reduction of coherency strain energy. The mechanisms of this process are described in Part I. Five mixed braid perthite–patch perthite crystals were analysed for major and trace elements using laser ablation-inductively coupled plasma mass spectrometry with a 19 μm beam diameter. This gave bulk analyses of the braid texture, which were in the range Ab73–54Or45–27An4.3–0.8, but could resolve Ab- and Or-rich patches in patch perthite. The major element bulk compositions of the crystals were retained during the replacement reactions. Major components in patches plot on tielines in the Ab–Or–An ternary system that pass through or very close to the parent braid perthite composition and indicate local equilibrium on the scale of a few tens of mm. Many trace elements, including REE, were lost to the fluid during the deuteric reactions, but the effect is large only for Fe and Ti. Cs, Pb and Sr were added to some crystals. Plots of log distribution coefficient D for Rb, Ba, Pb, Eu2+, La and Ce between Or- and Ab-rich patches against ionic radius are straight lines, assuming eightfold coordination, and to a first approximation are independent of ionic charge. K also lies on these lines, and the smaller ions Na and Ca lie close to them. The best linear fits were obtained using ionic radii for [8]K and [8]Ca, but there is ambiguity as to whether [7]Na or [5]Na is most appropriate. The linear relationship shows that the listed trace elements are in the feldspar M-site rather than in inclusions. Tl is in M although an exact D could not be obtained. The very large Cs ion partitions strongly into the Or-rich phase but its D value appears to be less than predicted by extrapolation. The near-linearity arises because partitioning is occurring between two solids into sites which have similar Young’s moduli, so that the parabolas that normally represent trace element partitioning between crystals and liquids (which have negligible shear strength) approximately cancel out. Ga and Be are in T-sites, as well as some of the Fe and Ti present, although part is in oxide inclusions. The site of Sc is unclear, but if structural it is likely to be T. Partitioning on M-sites is a potential geothermometer but because the effective size of the irregular M-site is defined by its K and (Na + Ca) contents, which are controlled by ternary solvus relationships, its calibration is not independent of conventional two-feldspar geothermometers. Trace elements may however provide a useful means of confirming that feldspar pairs are in equilibrium, and of recognising feldspar intergrowths produced by non-isochemical replacement rather than exsolution. Two-feldspar geothermometry for the ternary phases in the low-albite microcline patch perthites gives temperatures above the stability range of microcline, markedly so if a correction is made for Si–Al ordering. This is probably because current geothermometers are too sensitive to low concentrations of An in ordered Or-rich feldspars. This interpretation is supported by two-feldspar assemblages growing at known temperatures in geothermal systems and sedimentary basins. This paper and the earlier Part I are dedicated in the memory of J. V. Smith and W. L. Brown, both of whom died in 2007, in acknowledgement of their unrivalled contributions to the study of the feldspar minerals over more than half a century. An erratum to this article can be found at  相似文献   
43.
Geological studies show evidence for temporal clustering of large earthquakes on individual fault systems. Since post-seismic deformation due to the inelastic rheology of the lithosphere may result in a variable loading rate on a fault throughout the interseismic period, it is reasonable to expect that the rheology of the non-seismogenic lower crust and mantle lithosphere may play a role in controlling earthquake recurrence times. We study this phenomenon using a 2-D, finite element method continuum model of the lithosphere containing a single strike-slip fault. This model builds on a previous study using a 1-D spring-dashpot-slider analogue of a single fault system to study the role of Maxwell viscoelastic relaxation in producing non-periodic earthquakes. In our 2-D model, the seismogenic portion of the fault slips when a predetermined yield stress is exceeded; stress accumulated on the seismogenic fault is shed to the viscoelastic layers below and recycled back to the seismogenic fault through viscoelastic relaxation. We find that random variation of the fault yield stress from one earthquake to the next can cause the earthquake sequence to be clustered; the amount of clustering depends on a non-dimensional number, W , called the Wallace number defined as the standard deviation of the randomly varied fault yield stress divided by the effective viscosity of the system times the tectonic loading rate. A new clustering metric based on the bimodal distribution of interseismic intervals allows us to investigate clustering behaviour of systems over a wide range of model parameters and those with multiple viscoelastic layers. For models with   W ≥ 1  clustering increases with increasing W , while those with   W ≤ 1  are unclustered, or quasi-periodic.  相似文献   
44.
Radioactive waste management policies in seven industrialized democracies*   总被引:1,自引:0,他引:1  
This paper provides an inventory of radioactive waste management policies in seven industrialized democracies: the U.S., France, Japan, West Germany, Canada, the U.K. and Sweden. Collectively, these countries account for almost 75% of the world's installed nuclear power capacity and over 61% of its spentfuel production. Special emphasis is given to siting procedures for both high- and low-/intermediate-level waste repositories. Although several low-level repositories are operating or under construction, only West Germany has selected a site for high-level waste disposal, at Gorleben. It is expected that siting decisions will be highly conflict-laden in each country except for pro-nuclear France. The procedures for resolving potential siting conflicts are briefly reviewed. Sweden's strategy of siting its low-level repository near Forsmark offshore beneath the Baltic seabed minimizes conflict and may become attractive to other nations. Also, transnational agreements may eventually be sought as radioactive waste disposal is an international problem. This paper concludes with a comparative discussion of siting policies and their potential impacts.  相似文献   
45.
A Pre-Cambrian horizontal schistosity was formed in regionally metamorphosed rocks around Lannilis, Finistére, during repeated fold movements. Only horizontal movement occurred since the superimposed load due to deep burial was great. Biotite crystallisation along horizontal planes resulted in a schistosity except in the principal thrust zones where decussate biotite textures and large garnets developed. During the early movements, ‘ac’ girdles of quartz axes were formed but these girdles were rotated during the later movements along the schistosity. The degree of rotation and the form of the associated structures cannot be interpreted easily either by ‘Sow’ on planes perpendicular to a compression axis or by ‘slip’ along the schistosity.  相似文献   
46.
An enigmatic circular pit uncovered during archaeological excavations at the Clovis type site, Blackwater Draw, New Mexico, in 1964 has been reexposed and posited as a water well excavated by Clovis people around 11,500 B.C. The prehistoric well, the oldest in the New World, was probably a dry hole. Other Clovis wells may exist in the area. The excavation of wells near where there had been surface water shortly before adds to the evidence for drought during the Pleistocene-Holocene transition. © 1999 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号