首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   18篇
  国内免费   1篇
测绘学   1篇
大气科学   18篇
地球物理   86篇
地质学   33篇
海洋学   5篇
天文学   18篇
综合类   1篇
自然地理   20篇
  2024年   1篇
  2022年   1篇
  2021年   10篇
  2020年   7篇
  2019年   6篇
  2018年   3篇
  2017年   8篇
  2016年   10篇
  2015年   8篇
  2014年   7篇
  2013年   13篇
  2012年   9篇
  2011年   8篇
  2010年   8篇
  2009年   7篇
  2008年   8篇
  2007年   8篇
  2006年   8篇
  2005年   8篇
  2004年   7篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1977年   3篇
  1975年   1篇
排序方式: 共有182条查询结果,搜索用时 0 毫秒
131.
Measurements of the magnetic fields by the electron reflection method in the neighborhood of the long structural rille Rima Sirsalis show that a magnetic field of strength ? 100 nT (100 γ) is present over a region on the order of 10 km in width and at least 300 km long. The center of the magnetized region closely parallels and is centered on the rille. The linear magnetization feature extends at least to latitude 8°S, 60 km beyond the place where the rille disappears at the edge of Oceanus Procellarum. This extension is coincident with the extrapolation of the rille based on photographs. However, the magnetization is much weaker or entirely absent at 5°S and has vanished at 0° latitude. These results suggest that the rille is indeed a structural feature and has associated with it magnetization, either in the form of intrusive, magnetized rock, or else in the form of a gap in an otherwise more or less uniformly magnetized layer of rock of large extent in two dimensions. Furthermore, the rille structure evidently is present for some distance beneath the lava flows of the Oceanus Procellarum basin.  相似文献   
132.
Until recently, there was little information available on the water collection capabilities of pore water samplers. This study was conducted to evaluate the performance of ceramic, fritted-glass, stainless steel, and polytetrafluoroethylene (PTFE) porous samplers in sand and silt loam soil columns over a range of soil water potentials. Soil solution intake for samplers was determined by application of constant and falling vacuums. Constant vacuum was applied for a three-day period when soils were at field moisture capacity. The PTFE samplers did not function when tested with a constant or falling vacuum. With a 50-kPa constant vacuum, the ceramic sampler collected the greatest sample volume (average 20 mL) from the sand. With a constant 25-kPa vacuum, the stainless steel sampler collected the greatest sample volume (average 81 mL) from the silt loam soil. Sampler performance with a fixed volume of vacuum was evaluated by applying 100 kPa vacuum to a 1-liter reservoir. With this falling vacuum, samplers were tested until no further solution was collected over a 10-day test period. With a falling vacuum, fritted-glass and stainless steel samplers, with relatively larger pores and greater hydraulic conductance, collected a greater volume of sample and at a faster rate than ceramic samplers in sand soil that was nearly saturated. When the volume was normalized with respect to sampler surface area, for the falling vacuum tests in silt loam soil at field moisture capacity, the volume collected by fritted glass was significantly higher than those from other samplers. In sand at field moisture capacity or silt loam at soil water tensions ≧30 kPa, ceramic samplers maintained vacuums near 70 kPa and collected more sample than the other samplers during the 10-day test period.  相似文献   
133.
Acid rain and ongoing eruptive activity at Rincón de la Vieja volcano in northwestern Costa Rica have created a triangular, deeply eroded “dead zone” west-southwest of the Active Crater. The barren, steep-walled canyons in this area expose one of the best internal stratigraphic profiles of any active or dormant volcano in Costa Rica. Geologic mapping along the southwestern flank of the volcano reveals over 300 m of prehistoric volcanic stratigraphy, dominated by tephra deposits and two-pyroxene andesite lavas. Dense tropical forests and poor access preclude mapping elsewhere on the volcano. In the “dead zone” four stratigraphic groups are distinguished by their relative proportions of lava and tephra. In general, early volcanism was dominated by voluminous lava emissions, with explosive plinian eruptions becoming increasingly more dominant with time. Numerous phreatic eruptions have occurred in historic times, all emanating from the Active Crater. The stratigraphic sequence is capped by the Río Blanco tephra deposit, erupted at approximately 3500 yr B.P. Approximately 0.25 km3 (0.1 km3 DRE) of tephra was deposited in a highly asymmetrical dispersal pattern west-southwest of the source vent, indicating strong prevailing winds from the east and east-northeast at the time of the eruption. Grain-size studies of the deposit reveal that the eruption was subplinian, attaining an estimated column height of 16 km. A qualitative hazards assessment at Rincón de la Vieja indicates that future eruptions are likely to be explosive in style, with the zone of greatest hazard extending several kilometers north from the Active Crater.  相似文献   
134.
Plume containment using pump-and-treat (PAT) technology continues to be a popular remediation technique for sites with extensive groundwater contamination. As such, optimization of PAT systems, where cost is minimized subject to various remediation constraints, is the focus of an important and growing body of research. While previous pump-and-treat optimization (PATO) studies have used discretized (finite element or finite difference) flow models, the present study examines the use of analytic element method (AEM) flow models. In a series of numerical experiments, two PATO problems adapted from the literature are optimized using a multi-algorithmic optimization software package coupled with an AEM flow model. The experiments apply several different optimization algorithms and explore the use of various pump-and-treat cost and constraint formulations. The results demonstrate that AEM models can be used to optimize the number, locations and pumping rates of wells in a pump-and-treat containment system. Furthermore, the results illustrate that a total outflux constraint placed along the plume boundary can be used to enforce plume containment. Such constraints are shown to be efficient and reliable alternatives to conventional particle tracking and gradient control techniques. Finally, the particle swarm optimization (PSO) technique is identified as an effective algorithm for solving pump-and-treat optimization problems. A parallel version of the PSO algorithm is shown to have linear speedup, suggesting that the algorithm is suitable for application to problems that are computationally demanding and involve large numbers of wells.  相似文献   
135.
Collecting a representative time‐integrated sample of fluvial fine‐grained suspended sediment (<63 μm) is an important requirement for the understanding of environmental, geomorphological, and hydrological processes operating within watersheds. This study (a) characterized the hydrodynamic behaviour of a commonly used time‐integrated fine sediment sampler (TIFSS) using an acoustic Doppler velocimeter (ADV) in controlled laboratory conditions and (b) measured the mass collection efficiency (MCE) of the sampler by an acoustic Doppler current profiler under field conditions. The laboratory results indicated that the hydrodynamic evaluations associated with the original development of the TIFSS involved an underestimation of the inlet flow velocity of the sampler that results in a significant overestimation of the theoretical MCE. The ADV data illustrated that the ratio of the inlet flow velocity of the sampler to the ambient velocity was 87% and consequently, it can be assumed that a representative sample of the ambient fine suspended particles entered into the sampler. The field results showed that the particle size distribution of the sediment collected by the TIFSS was statistically similar to that for the ambient sediment in the Red River, Manitoba, Canada. The MCE of the TIFSS in the field trials appeared to be as low as 10%. Collecting a representative sample in the field was consistent with the previous findings that the TIFSS is a suitable sampler for the collection of a representative sample of sufficient mass (e.g., >1 g) for the investigation of the properties of fluvial fine‐grained suspended sediment. Hydrodynamic evaluation of the TIFSS under a wider range of hydraulic conditions is suggested to assess the performance of the sampler during high run‐off events.  相似文献   
136.
We evaluate the influence of topography on motions recorded at the base and crest of an approximate 3H:1V, 20 m single-faced slope. The motions were recorded during the 1983 Coalinga earthquake mainshock and two aftershocks. Mainshock peak accelerations at the crest and base transverse to the slope face were 0.59 and 0.38 g, respectively. The spectral amplification of crest motion occurred across T≈0–2 s. Differences between the crest/base motions are postulated to result principally from soil-structure interaction (base instrument is in a structure), variations in local ground response, and topography. Transfer functions quantifying soil-structure interaction (SSI) effects are evaluated and the base motion is modified at short periods to correct it to an equivalent free-field motion. The different levels of ground response at the crest and base are identified based on location-specific measurements of soil shear wave velocities. Differences between crest/base motions not accounted for by SSI or differential ground response are attributed to topographic effects. By these means, topographic spectral amplification (i.e. amplification relative to level ground conditions) is estimated to be about 1.2 at the crest and about 0.85–0.9 at the base across the period range T≈0.4–1.0 s.  相似文献   
137.
Glaciers and ice sheets play a dynamic role in Earth's climate system, influencing regional- and global-scale climate and responding to climate change on time scales from years to millennia. They are also an integral part of Earth's landscape in alpine and polar regions, where they are an active agent in isostatic, tectonic, and Earth surface processes. This review paper summarizes recent progress in understanding and modelling ice sheet dynamics, from the microphysical processes of ice deformation in glaciers to continental-scale processes that influence ice dynamics. Based on recent insights and research directions, it can be expected that a new generation of ice sheet models will soon replace the current standard. Improvements that can be foreseen in the near future include: (i) the addition of internally-consistent evolutionary equations for ice crystal fabric (anisotropic flow laws), (ii) more generalized flow laws that include different deformation mechanisms under different stress regimes, (iii) explicit incorporation of the effects of chemical impurities and grain size (dynamic recrystallization) on ice deformation, (iv) higher-order stress solutions to the momentum balance (Stokes' equation) that governs ice sheet flow, and (v) the continued merger of ice sheet models with increasingly complex Earth systems models, which include fully-coupled subglacial hydrological and geological processes. Examples from the Greenland Ice Sheet and Vatnajökull Ice Cap, Iceland are used to illustrate several of these new directions and their importance to glacier dynamics.  相似文献   
138.
River supercooling and ice formation is a regular occurrence throughout the winter in northern countries. The resulting frazil ice production can obstruct the flow through intakes along the river, causing major problems for hydropower and water treatment facilities, among others. Therefore, river ice modellers attempt to calculate the river energy budget and predict when supercooling will occur in order to anticipate and mitigate the effects of potential intake blockages. Despite this, very few energy budget studies have taken place during freeze-up, and none have specifically analysed individual supercooling events. To improve our understanding of the freeze-up energy budget detailed measurements of air temperature, relative humidity, barometric pressure, wind speed and direction, short- and longwave radiation, and water temperature were made on the Dauphin River in Manitoba. During the river freeze-up period of late October to early November 2019, a total of six supercooling events were recorded. Analysis of the energy budget throughout the supercooling period revealed that the most significant heat source was net shortwave radiation, reaching up to 298 W/m2, while the most significant heat loss was net longwave radiation, accounting for losses of up to 135 W/m2. Longwave radiation was also the most significant heat flux overall during the individual supercooling events, accounting for up to 84% of the total heat flux irrespective of flux direction, highlighting the importance of properly quantifying this flux during energy budget calculations. Five different sensible (Qh) and latent (Qe) heat flux calculations were also compared, using the bulk aerodynamic method as the baseline. It was found that the Priestley and Taylor method most-closely matched the bulk aerodynamic method on a daily timescale with an average offset of 8.5 W/m2 for Qh and 10.1 W/m2 for Qe, while a Dalton-type equation provided by Webb and Zhang was the most similar on a sub-daily timescale with average offsets of 20.0 and 14.7 W/m2 for Qh and Qe, respectively.  相似文献   
139.
140.
Pump‐and‐treat systems can prevent the migration of groundwater contaminants and candidate systems are typically evaluated with groundwater models. Such models should be rigorously assessed to determine predictive capabilities and numerous tools and techniques for model assessment are available. While various assessment methodologies (e.g., model calibration, uncertainty analysis, and Bayesian inference) are well‐established for groundwater modeling, this paper calls attention to an alternative assessment technique known as screening‐level sensitivity analysis (SLSA). SLSA can quickly quantify first‐order (i.e., main effects) measures of parameter influence in connection with various model outputs. Subsequent comparisons of parameter influence with respect to calibration vs. prediction outputs can suggest gaps in model structure and/or data. Thus, while SLSA has received little attention in the context of groundwater modeling and remedial system design, it can nonetheless serve as a useful and computationally efficient tool for preliminary model assessment. To illustrate the use of SLSA in the context of designing groundwater remediation systems, four SLSA techniques were applied to a hypothetical, yet realistic, pump‐and‐treat case study to determine the relative influence of six hydraulic conductivity parameters. Considered methods were: Taguchi design‐of‐experiments (TDOE); Monte Carlo statistical independence (MCSI) tests; average composite scaled sensitivities (ACSS); and elementary effects sensitivity analysis (EESA). In terms of performance, the various methods identified the same parameters as being the most influential for a given simulation output. Furthermore, results indicate that the background hydraulic conductivity is important for predicting system performance, but calibration outputs are insensitive to this parameter (KBK). The observed insensitivity is attributed to a nonphysical specified‐head boundary condition used in the model formulation which effectively “staples” head values located within the conductivity zone. Thus, potential strategies for improving model predictive capabilities include additional data collection targeting the KBK parameter and/or revision of model structure to reduce the influence of the specified head boundary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号