首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
  国内免费   1篇
测绘学   2篇
大气科学   1篇
地球物理   11篇
地质学   15篇
海洋学   2篇
天文学   4篇
综合类   2篇
自然地理   1篇
  2023年   1篇
  2021年   5篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  1995年   1篇
  1989年   1篇
排序方式: 共有38条查询结果,搜索用时 46 毫秒
11.
Considering the adverse outcomes of thunderstorm-mediated lightning in recent years, this study aimed to identify the most thunderstorm-and-casualty prone regions and seasons in Bangladesh, via geospatial mapping. We attempted to forecast the number of yearly thunderstorm (TS) days for each meteorological station and district-level lightning casualties by using TS days as a proxy variable. Data on TS days and lightning casualties were collected from Bangladesh Meteorological Department and Network for Information, Response And Preparedness Activities on Disaster respectively. This study analysed 629 fatalities and 232 injuries. The Integrated Nested Laplace Approximation with Matern covariance function was employed to assess the spatial pattern of TS days. Polynomial regressions were used to forecast the number of TS days and the single clustered Generalized Estimating Equations method was employed to explore the relationship between the number of TS days and lightning casualties. The results indicated that the mean number of TS days per station increased in recent years, particularly in February, March, April, and September. We found the months of April, May, June, and September to be the most threatening months due to TS events and related casualties. The northeast region was identified as the most TS-prone region with the highest number of casualties in Bangladesh. Our analysis suggests that it might remain the most hazardous region in coming years.  相似文献   
12.
This study investigates the values of pH, total dissolved solids (TDS), elevation, oxidative reduction potential (ORP), temperature, and depth, while the concentrations of Br, and potentially harmful metals (PHMs) such as Cr, Ni, Cd, Mn, Cu, Pb, Co, Zn, and Fe in the groundwater samples. Moreover, geographic information system (GIS), XLSTAT, and IBM SPSS Statistics 20 software were used for spatial distribution modeling, principal component analysis (PCA), cluster analysis (CA), and Quantile-Quantile (Q-Q) plotting to determine groundwater pollution sources, similarity index, and normal distribution reference line for the selected parameters. The mean values of pH, TDS, elevation, ORP, temperature, depth, and Br were 7.2, 322 mg/L, 364 m, 188 mV, 29.6 °C, 70 m, 0.20 mg/L, and PHMs like Cr, Ni, Cd, Mn, Cu, Pb, Co, Zn, and Fe were 0.38, 0.26, 0.08, 0.27, 0.36, 0.22, 0.04, 0.43 and 0.86 mg/L, respectively. PHMs including Cr (89%), Cd (43%), Mn (23%), Pb (79%), Co (20%), and Fe (91%) exceeded the guideline values set by the world health organization (WHO). The significant R2 values of PCA for selected parameters were also determined (0.62, 0.67, 0.78, 0.73, 0.60, 0.87, ?0.50, 0.69, 0.70, 0.74, ?0.50, 0.70, 0.67, 0.79, 0.59, and ?0.55, respectively). PCA revealed three geochemical processes such as geogenic, anthropogenic, and reducing conditions. The mineral phases of Cd(OH)2, Fe(OH)3, FeOOH, Mn3O4, Fe2O3, MnOOH, Pb(OH)2, Mn(OH)2, MnO2, and Zn(OH)2 (?3.7, 3.75, 9.7, ?5.8, 8.9, ?3.6, 2.2, ?4.6, ?7.7, ?0.9, and 0.003, respectively) showed super-saturation and under-saturation conditions. Health risk assessment (HRA) values for PHMs were also calculated and the values of hazard quotient (HQ), and hazard indices (HI) for the entire study area were increased in the following order: Cd>Ni>Cu>Pb>Mn>Zn>Cr. Relatively higher HQ and HI values of Ni, Cd, Pb, and Cu were greater than one showing unsuitability of groundwater for domestic, agriculture, and drinking purposes. The long-term ingestion of groundwater could also cause severe health concerns such as kidney, brain dysfunction, liver, stomach problems, and even cancer.  相似文献   
13.
Drainage reorganization on restricted temporal and spatial scales is poorly-documented. We attempt to decode the relatively complicated mechanism of drainage realignment involving two small rivers that show structurally controlled, highly anomalous channel networks. We provide geomorphic and shallow subsurface evidence using ground-penetrating radar (GPR) for the presence of a buried paleo-valley flowing northward through the wind gap and surface faulting along the range bounding Katrol Hill Fault (KHF) which correlates with the previously known three surface faulting events in last ~30 ka bp . Most of the present river channels and the KHF zone are occupied by aeolian miliolite (local name) which is stratigraphic and lithologic equivalent of the Late Quaternary carbonate rich aeolianite deposits occurring in several parts of the globe. The history of drainage evolution in the study area comprises pre-miliolite, syn-miliolite and post-miliolite phases. Geomorphic evidences show that the paleo-Gangeshwar River flowed north through the wind gap and paleo-valley, while the short paleo-Gunawari occupied the saddle zone to the east of Ler dome prior to and during the phase of miliolite deposition which ended by ~40 ka bp . Southward tilting of the Katrol Hill Range (KHR) due to surface faulting cut off the catchment of the paleo-Gangeshwar River. The abandoned catchment stream extended its channel eastward along the strike through top-down process while the paleo-Gunawari River extended its course westward by headward erosion (bottom-up process). As the channels advanced towards each other they joined to produce the “S”-shaped bend which formed the capture point. We conclude that multiple surface faulting events along the KHF in the last ~30 ka bp , resulted in uplift and tilting of the KHR which caused drainage realignment by river diversion, beheading and river capture. Our study shows that the complexity of drainage reorganization processes is more explicit on shorter rather than longer timescales.  相似文献   
14.
Gravity data collected by the Geological Survey of Bangladesh are processed and interpreted for imaging of a sediment-basement interface over the northwestern part of Bangladesh. The observed gravity data are processed for discriminating gravitational fields contributed subtly from the shallow basement topographic feature with the twelve nodal piecewise cubic polynomial–based finite–element approach. In spectral analysis, the presence of a widely spread shallow basement feature has been detected and interpretation of gravity data using a two-dimensional gravity inversion technique indicates that its depth ranges from 0.041 km to 0.570 km relative to ground surface. In the northern part of the study area, the inferred basement configuration shows a general depression of the basement in the Takurgaon-Panchagar and Lalmonirhat districts and reaches a maximum depth of about 0.570 km. In the Nilphamari district and its southwestern part, the basement occurs at the most shallow depth due to its upliftment. However, the estimated sediment-basement interface depths are compared with the borehole and other geophysical interpretative information and are found to be consistent.  相似文献   
15.
Magmatism in Kachchh, in the northwestern Deccan continental flood basalt province, is represented not only by typical tholeiitic flows and dikes, but also plug-like bodies, in Mesozoic sandstone, of alkali basalt, basanite, melanephelinite and nephelinite, containing mantle nodules. They form the base of the local Deccan stratigraphy and their volcanological context was poorly understood. Based on new and published field, petrographic and geochemical data, we identify this suite as an eroded monogenetic volcanic field. The plugs are shallow-level intrusions (necks, sills, dikes, sheets, laccoliths); one of them is known to have fed a lava flow. We have found local peperites reflecting mingling between magmas and soft sediment, and the remains of a pyroclastic vent composed of non-bedded lapilli tuff breccia, injected by mafic alkalic dikes. The lapilli tuff matrix contains basaltic fragments, glass shards, and detrital quartz and microcline, with secondary zeolites, and there are abundant lithic blocks of mafic alkalic rocks. We interpret this deposit as a maar-diatreme, formed due to phreatomagmatic explosions and associated wall rock fragmentation and collapse. This is one of few known hydrovolcanic vents in the Deccan Traps. The central Kachchh monogenetic volcanic field has >30 individual structures exposed over an area of ∼1,800 km2 and possibly many more if compositionally identical igneous intrusions in northern Kachchh are proven by future dating work to be contemporaneous. The central Kachchh monogenetic volcanic field implies low-degree mantle melting and limited, periodic magma supply. Regional directed extension was absent or at best insignificant during its formation, in contrast to the contemporaneous significant directed extension and vigorous mantle melting under the main area of the Deccan flood basalts. The central Kachchh field demonstrates regional-scale volcanological, compositional, and tectonic variability within flood basalt provinces, and adds the Deccan Traps to the list of such provinces containing monogenetic- and/or hydrovolcanism, namely the Karoo-Ferrar and Emeishan flood basalts, and plateau basalts in Saudi Arabia, Libya, and Patagonia.  相似文献   
16.
An ~22-m-thick saucer-shaped sill occurs near Mahad and is exposed as a curvilinear, miniature ridge within the Deccan Traps. The sill has variable dips (42–55°). It has a 7.1-km long axis and 5.3 km short axis (aspect ratio of 1.4) and is larger than the MV sill of the Golden Valley sill complex, South Africa and the Panton sill, Australia. The sill has distinct glassy upper and lower chilled margins with a coarse-grained highly jointed core. The samples from the margin are invariably fractured and iron stained because of deuteric alteration. The rock from the sill is plagioclase-phyric basalt. At least three thick sill-like apophyses emanate from the base of the main sill. The apophyses change direction because of bending and thinning from a horizontal concordant sheet at the top to a discordant inclined form that bends again to pass into a lower horizontal concordant sheet. We interpret such features as ‘nascent saucer-shaped sills’ that did not inflate to form nested sills. Geochemically, the sill consists of poorly differentiated tholeiitic basalt that has a restricted geochemical range. Critical trace element ratios and primitive mantle normalised trace and REE patterns indicate that the sills have geochemical affinities to the Poladpur chemical type and that the pahoehoe flow they intrude belongs to the Bushe Formation. Calculated magmatic overpressures during sill emplacement range from 8.4 to 11.3 MPa (for Young’s modulus E?=?5 GPa) and 16.7 to 22.5 MPa (for E=10 GPa) and depth to magma chamber ranges from 8.5 to 11.5 km (E?=?5 GPa) and 17.1 to 22.9 km (E?=?10 GPa), consistent with petrological and gravity modelling. The volume of the Mahad sill is approximately 276 km3 and is constant irrespective of the variations in the values of host-rock Young’s modulus. In 1980, Cox (J Petrol 21:629–650, 1980) proposed a conceptual model of the crust–mantle section beneath the Karoo CFB which is considered as the fundamental model for flood basalt volcanism. Our paper confirms the presence of a sill plus the inferred substructure beneath Mahad that are compatible with predictions of that model. In LIPS, saucer-shaped sills are formed in areas experiencing extensional tectonics where processes such as the Cook–Gordon delamination and Dundurs elastic extensional mismatch between layered sedimentary rocks or lava flows are responsible for the deflection of dykes into sills. A similar process is envisaged for the formation of the Mahad sill.  相似文献   
17.
Spherulites and thundereggs are rounded, typically spherical, polycrystalline objects found in glassy silicic rocks. Spherulites are dominantly made up of radiating microscopic fibers of alkali feldspar and a silica mineral (commonly quartz). They form due to heterogeneous nucleation in highly supercooled rhyolitic melts or by devitrification of glass. Associated features are lithophysae (“stone bubbles”), which have an exterior (sometimes concentric shells) of fine quartz and feldspar, and internal cavities left by escaping gas; when filled by secondary silica, these are termed thundereggs. Here, we describe four distinct occurrences of spherulites and thundereggs, in pitchstones (mostly rhyolitic, some trachytic) of the Deccan Traps, India. The thundereggs at one locality were previously misidentified as rhyolitic lava bombs and products of pyroclastic extrusive activity. We have characterized the thundereggs petrographically and geochemically and have determined low contents of magmatic water (0.21–0.38 wt.%) in them using Fourier transform infrared spectroscopy. We consider that the spherulite-bearing outcrops at one of the localities are of lava flows, but the other three represent subvolcanic intrusions. Based on the structural disposition of the Deccan sheet intrusions studied here and considerations of regional geology, we suggest that they are cone sheets emplaced from a plutonic center now submerged beneath the Arabian Sea.  相似文献   
18.
Textile effluent from dyeing process has been a serious environmental threat for years. This study was intended to evaluate the performance of Fenton’s process for the removal of chemical oxygen demand (COD), colour and turbidity. Experiments were conducted by laboratory-scale reactors fed with cotton dyeing effluent. The Fenton process employs ferrous ions and hydrogen peroxide H2O2 under acidic pH conditions. The experimental variables studied include doses of iron salts and hydrogen peroxide, oxidation time, pH for oxidation and coagulation. The COD, color and turbidity removal reached a maximum of 97.2, 96.8 and 84.8% respectively at a reaction time of 20 min under optimum doses of H2O2 and Fe2+. Hydrogen peroxide dose ranging from 0.5 to 2.0 mL/500 mL and FeSO4 · 7H2O in the range of 0.5–4.0 gm/500 mL were selected to be examined at different reaction times between 10 and 30 min. Optimum dose of hydrogen peroxide and ferrous sulphate were 2.0 mL and 1.0 gm respectively for 500 mL of sample. In this study optimized pH 4.0 and 6.0 was found effective for oxidation and coagulation respectively.  相似文献   
19.
A one dimensional reactive transport model was developed in order to illustrate the biogeochemical behavior of arsenic and iron reduction and release to groundwater that accounts for the reaction coupling the major redox elements under reducing environment. Mass transport equation and the method of characteristics were used considering fundamental geochemical processes to simulate transport processes of different pollutants in mobile phase. The kinetic sub-model describes the heterotrophic metabolisms of several microorganisms. To model a complete redox sequence (aerobic or denitrifiers, Fe(III)-reduction, respiration bacteria of iron and arsenic compounds, and As(V) reduction) four functional bacterial groups (X 1, X 2, X 3, and X 4) were defined. Microbial growth was assumed to follow Monod type kinetics. The exchange between the different phases (mobile, bio, and matrix) was also considered in this approach. Results from a soil column experiment were used to verify the simulation results of the model. The model depicts the utilization of oxygen, nitrate, iron oxide and arsenic as electron acceptors for oxidation of organic carbon (OC) in a column. The OC as electron donor is one of the most important factors that affect the iron and arsenic reduction bacterial activity.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号