首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1807篇
  免费   97篇
  国内免费   16篇
测绘学   38篇
大气科学   139篇
地球物理   483篇
地质学   560篇
海洋学   141篇
天文学   361篇
综合类   1篇
自然地理   197篇
  2021年   27篇
  2020年   24篇
  2019年   32篇
  2018年   54篇
  2017年   45篇
  2016年   74篇
  2015年   42篇
  2014年   50篇
  2013年   102篇
  2012年   75篇
  2011年   104篇
  2010年   80篇
  2009年   114篇
  2008年   97篇
  2007年   76篇
  2006年   87篇
  2005年   83篇
  2004年   60篇
  2003年   55篇
  2002年   62篇
  2001年   40篇
  2000年   37篇
  1999年   46篇
  1998年   35篇
  1997年   23篇
  1996年   32篇
  1995年   25篇
  1994年   23篇
  1993年   18篇
  1992年   22篇
  1991年   13篇
  1990年   18篇
  1989年   11篇
  1988年   14篇
  1987年   9篇
  1986年   10篇
  1985年   15篇
  1984年   17篇
  1983年   19篇
  1982年   13篇
  1981年   19篇
  1980年   9篇
  1979年   14篇
  1978年   17篇
  1977年   12篇
  1976年   7篇
  1975年   6篇
  1974年   9篇
  1973年   9篇
  1971年   7篇
排序方式: 共有1920条查询结果,搜索用时 828 毫秒
821.
Prevailing theory suggests that stream temperature warms asymptotically in a downstream direction, beginning at the temperature of the source in the headwaters and levelling off downstream as it converges to match meteorological conditions. However, there have been few empirical examples of longitudinal patterns of temperature in large rivers due to a paucity of data. We constructed longitudinal thermal profiles (temperature vs distance) for 53 rivers in the Pacific Northwest (USA) using an extensive data set of remotely sensed summertime river temperatures and classified each profile into one of five patterns of downstream warming: asymptotic (increasing then flattening), linear (increasing steadily), uniform (not changing), parabolic (increasing then decreasing), or complex (not fitting other classes). We evaluated (1) how frequently profiles warmed asymptotically downstream as expected, and (2) whether relationships between river temperature and common hydroclimatic variables differed by profile class. We found considerable diversity in profile shape, with 47% of rivers warming asymptotically and 53% having alternative profile shapes. Water temperature did not warm substantially over the course of the river for coastal parabolic and uniform profiles, and for some linear and complex profiles. Profile classes showed no clear geographical trends. The degree of correlation between river temperature and hydroclimatic variables differed among profile classes, but there was overlap among classes. Water temperature in rivers with asymptotic or parabolic profiles was positively correlated with August air temperature, tributary temperature and velocity, and negatively correlated with elevation, August precipitation, gradient and distance upstream. Conversely, associations were less apparent in rivers with linear, uniform or complex profiles. Factors contributing to the unique shape of parabolic profiles differed for coastal and inland rivers, where downstream cooling was influenced locally by climate or cool water inputs, respectively. Potential drivers of shape for complex profiles were specific to each river. These thermal patterns indicate diverse thermal habitats that may promote resilience of aquatic biota to climate change. Without this spatial context, climate change models may incorrectly estimate loss of thermally suitable habitat. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
822.
Modelled hydrologic processes are represented in a set of numerical equations; the complexity of which can be measured by the total number of variables needed. A single dominant hydrologic process could control the hydrologic response of a watershed, and so the identification of the corresponding dominant variable(s) would aid in identifying a parsimonious model and in collecting more reliable data. By accounting for both model complexity and serial correlation in the variables, a model is used to identify the dominant variables for representing watershed scale streamflow, sediment transport and phosphorus yields. Long‐term water quantity and quality data were used to show that rainfall and non‐linear soil water storage were the dominant variables for weekly streamflow, suspended sediment and particulate phosphorus. Model accuracy did not consistently improve when other statistically significant variables were included. The results suggest that improved model performance may not justify the added model complexity. As such, identification of dominant variables would be the priority for developing parsimonious hydrologic models, especially at watershed scales. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
823.
Quantifying the relative contributions of different sources of water to a stream hydrograph is important for understanding the hydrology and water quality dynamics of a given watershed. To compare the performance of two methods of hydrograph separation, a graphical program [baseflow index (BFI)] and an end‐member mixing analysis that used high‐resolution specific conductance measurements (SC‐EMMA) were used to estimate daily and average long‐term slowflow additions of water to four small, primarily agricultural streams with different dominant sources of water (natural groundwater, overland flow, subsurface drain outflow, and groundwater from irrigation). Because the result of hydrograph separation by SC‐EMMA is strongly related to the choice of slowflow and fastflow end‐member values, a sensitivity analysis was conducted based on the various approaches reported in the literature to inform the selection of end‐members. There were substantial discrepancies among the BFI and SC‐EMMA, and neither method produced reasonable results for all four streams. Streams that had a small difference in the SC of slowflow compared with fastflow or did not have a monotonic relationship between streamflow and stream SC posed a challenge to the SC‐EMMA method. The utility of the graphical BFI program was limited in the stream that had only gradual changes in streamflow. The results of this comparison suggest that the two methods may be quantifying different sources of water. Even though both methods are easy to apply, they should be applied with consideration of the streamflow and/or SC characteristics of a stream, especially where anthropogenic water sources (irrigation and subsurface drainage) are present. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
824.
By incorporating the nonlinear variation of a soil's compressibility and permeability during the process of consolidation, an analytical solution for the radial consolidation of vertical drains has been developed for a general time‐variable loading. The general solution was verified for the cases of instantaneous loading and ramp loading. Detailed solutions were further derived for two special loading schemes: multistage loading and preloading–unloading–reloading. The nonlinear consolidation behavior of a vertical drain subjected to these two types of loading schemes was then investigated by a parametric study. The results show that the loading rate, the ratio of the compressibility index to the permeability index (Cc/Ck), and the initial stress state have a significant influence on the consolidation rate. A smaller value of Cc/Ck, a larger initial stress, or a fast loading rate always leads to a rapid consolidation rate. During the unloading period, a negative excess pore water pressure may occur, and a slower unloading rate may reduce this negative value. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
825.
Although temporal variation in headwater stream chemistry has long been used to document baseline conditions and response to environmental drivers, less attention is paid to fine scale spatial variations that could yield clues to processes controlling stream water sources. We documented spatial and temporal variation in water composition in a headwater catchment (41 ha) at the Hubbard Brook Experimental Forest, NH, USA. We sampled every 50 m along an ephemeral to perennial stream network as well as groundwater from seeps and 35 shallow wells across varying flow conditions. Groundwater influences on surface water in this region have not been considered to be important in past studies as relatively coarse soils were assumed to be well drained in steep catchments with flashy runoff response. However, seeps displayed perennial discharge, upslope accumulated areas (UAA) smaller than those for channel initiation sites and higher pH, Ca and Si concentrations than streams, suggesting relatively long groundwater residence time or long subsurface flow paths not bound by topographic divides. Coupled with a large range in groundwater chemistry seen in wells, these results suggest stream chemistry variation reflects the range of connectivity with, and quality of, groundwater controlled by hillslope hydropedological processes. The magnitude of variations of solute concentrations seen in the first order catchment was as broad as that seen at the fifth order Hubbard Brook Valley (3519 ha). Reduction in variation in solute concentrations with increasing UAA suggested a representative elementary area (REA) value of less than 3 ha in the first order catchment, compared with 100 ha for the fifth order basin. Thus, the REA is not necessarily an elementary catchment property. Rather, the partitioning of variation between highly variable upstream sources and relatively homogenous downstream characteristics may have different physical significance depending on the scale and complexity of the catchment under examination. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
826.
827.
It is well known that snow plays an important role in land surface energy balance; however, modelling the subgrid variability of snow is still a challenge in large‐scale hydrological and land surface models. High‐resolution snow depth data and statistical methods can reveal some characteristics of the subgrid variability of snow depth, which can be useful in developing models for representing such subgrid variability. In this study, snow depth was measured by airborne Lidar at 0.5‐m resolution over two mountainous areas in south‐western Wyoming, Snowy Range and Laramie Range. To characterize subgrid snow depth spatial distribution, measured snow depth data of these two areas were meshed into 284 grids of 1‐km × 1‐km. Also, nine representative grids of 1‐km × 1‐km were selected for detailed analyses on the geostatistical structure and probability density function of snow depth. It was verified that land cover is one of the important factors controlling spatial variability of snow depth at the 1‐km scale. Probability density functions of snow depth tend to be Gaussian distributions in the forest areas. However, they are eventually skewed as non‐Gaussian distribution, largely due to the no‐snow areas effect, mainly caused by snow redistribution and snow melt. Our findings show the characteristics of subgrid variability of snow depth and clarify the potential factors that need to be considered in modelling subgrid variability of snow depth.  相似文献   
828.
The remote First Nation (FN) communities of the Mushkegowuk Territory on the west coast of James Bay, Ontario, Canada are currently facing increased development pressures and the imposition of a government land use planning process. The land use planning process is mandated in the Far North Act (received Royal Assent on September 23, 2010). There is a need for capacity enhancement for community-based natural resource planning and management in the Territory. A number of frameworks are emerging for addressing change brought on by resource development and building resilience to such change at the community level. Among these include the concept of adaptive capacity. In collaboration with FN community leaders, we explored the use of “collaborative geomatics” tools to foster adaptive capacity. Our action research suggests that collaborative geomatics technologies should enhance the Mushkegowuk First Nations’ adaptive capacity to address environmental and policy change by allowing them to collect and manage data collaboratively (e.g., traditional environmental knowledge, western science) to create opportunities for innovative community development, including natural resource development and management.  相似文献   
829.
High-resolution pollen and magnetic susceptibility (MS) analyses have been carried out on a sediment core taken from a high-elevation alpine bog area located in Sierra Nevada, southern Spain. The earliest part of the record, from 8200 to about 7000 cal yr BP, is characterized by the highest abundance of arboreal pollen and Pediastrum, indicating the warmest and wettest conditions in the area at that time. The pollen record shows a progressive aridification since 7000 cal yr BP that occurred in two steps, first shown by a decrease in Pinus, replaced by Poaceae from 7000 to 4600 cal yr BP and then by Cyperaceae, Artemisia and Amaranthaceae from 4600 to 1200 cal yr BP. Pediastrum also decreased progressively and totally disappeared at ca. 3000 yr ago. The progressive aridification is punctuated by periodically enhanced drought at ca. 6500, 5200 and 4000 cal yr BP that coincide in timing and duration with well-known dry events in the Mediterranean and other areas. Since 1200 cal yr BP, several changes are observed in the vegetation that probably indicate the high-impact of humans in the Sierra Nevada, with pasturing leading to nutrient enrichment and eutrophication of the bog, Pinus reforestation and Olea cultivation at lower elevations.  相似文献   
830.
The localized impact of blooms of the mixotrophic ciliate Myrionecta rubra in the Columbia River estuary during 2007–2010 was evaluated with biogeochemical, light microscopy, physiological, and molecular data. M. rubra affected surrounding estuarine nutrient cycles, as indicated by high and low concentrations of organic nutrients and inorganic nitrogen, respectively, associated with red waters. M. rubra blooms also altered the energy transfer pattern in patches of the estuarine water that contain the ciliate by creating areas characterized by high primary production and elevated levels of fresh autochthonous particulate organic matter, therefore shifting the trophic status in emergent red water areas of the estuary from net heterotrophy towards autotrophy. The pelagic estuarine bacterial community structure was unaffected by M. rubra abundance, but red waters of the ciliate do offer a possible link between autotrophic and heterotrophic processes since they were associated with elevated dissolved organic matter and showed a tendency for enhanced microbial secondary production. Taken together, these findings suggest that M. rubra red waters are biogeochemical hotspots of the Columbia River estuary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号