首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1635篇
  免费   93篇
  国内免费   16篇
测绘学   34篇
大气科学   133篇
地球物理   458篇
地质学   515篇
海洋学   136篇
天文学   321篇
综合类   1篇
自然地理   146篇
  2021年   28篇
  2020年   23篇
  2019年   28篇
  2018年   51篇
  2017年   39篇
  2016年   72篇
  2015年   39篇
  2014年   48篇
  2013年   102篇
  2012年   72篇
  2011年   94篇
  2010年   66篇
  2009年   107篇
  2008年   85篇
  2007年   69篇
  2006年   70篇
  2005年   76篇
  2004年   53篇
  2003年   51篇
  2002年   56篇
  2001年   36篇
  2000年   33篇
  1999年   36篇
  1998年   31篇
  1997年   18篇
  1996年   32篇
  1995年   23篇
  1994年   22篇
  1993年   21篇
  1992年   23篇
  1991年   13篇
  1990年   18篇
  1989年   10篇
  1988年   12篇
  1987年   8篇
  1986年   10篇
  1985年   14篇
  1984年   15篇
  1983年   17篇
  1982年   13篇
  1981年   16篇
  1980年   8篇
  1979年   15篇
  1978年   14篇
  1977年   11篇
  1975年   4篇
  1974年   6篇
  1973年   7篇
  1971年   5篇
  1967年   5篇
排序方式: 共有1744条查询结果,搜索用时 15 毫秒
91.
The Main Tuff Interval (MTI) is a 3.5 to 16.4 m thick sequence of pyroclastic turbidites in the Wittenoom Formation of the late Archean to early Proterozoic Hamersley Group, Western Australia. The Hamersley Group accumulated in a basin located on the Archean Pilbara Craton, Western Australia. MTI pyroclasts formed via hydrovolcanic eruption processes from a magma that was likely intermediate in composition. Eruption took place in a shallow subaqueous setting. The MTI was deposited by high- and low- concentration turbidity currents in four overlapping regional depositional packages. Paleocurrent and stratigraphic data indicate the MTI source lay to the north of the present exposure limits of the Hamersley Group on the Pilbara Craton, and was likely to have been a single volcano. Reflection of turbidity currents in the southeastern part of the study area and westward travel of the reflected flows indicate that the Hamersley Group depositional basin shallowed to the east and south at the time of MTI deposition. The presence of the MTI source volcano on the northern Pilbara Craton indicates that the subsidence and marine deposition recorded by the Hamersley Group may be limited to the southern portion of the craton, and that volcanism may have continued on the northern Pilbara Craton.  相似文献   
92.
The Delbridge orebody occurs within a thick sequence (> 1 km) of porphyritic to aphyric massive rhyolite and rhyolite breccia of the Archean Blake River Group. The orebody produced ≈ 370,000 tonnes grading 0.61% Cu, 9.6% Zn, 110 g/t Ag and 2.1 g/t Au (1969–1971). The footwall consists of massive quartz porphyritic rhyolite mantled by proximal rhyolite breccias. An irregular chloritic alteration pipe with mineralization is subvertical to the ore lens. The orebody occurs at a thick cherty horizon within rhyolite breccia, and is overlain by a succession of mafic debris flows, porphyritic to aphyric massive rhyolite flows, and finally andesite. The main alteration assemblage in the rhyolite units is quartz-albite-sericite-chlorite-carbonate. Immobile element plots and rare-earth element data indicate that the footwall rhyolite flows and proximal breccias are tholeiitic to transitional (Zr/Y = 3.5–5.5; LaN/YbN = 1.7–2.6), whereas hangingwall rhyolite flows are mildly calc-alkaline (Zr/Y = 6.5–7.5; LaN/YbN = 2.8–3.8). These two rhyolite types also have separate alteration lines in Ti-Zr space and in various immobile element plots. The identification of chemically different rhyolites above and below the orebody provides markers that can be identified and traced even where strongly altered. An intrusive rhyolite mass in the footwall is chemically identical to the hangingwall aphyric rhyolite flows, and is interpreted as the feeder to these flows. Calculated mass changes in the footwall rhyolite commonly are large, and result from major silica change (±30%), significant loss of Na2O + CaO, and important additions of K2O and FeO + MgO. The margins of the pipe show net mass gain, whereas the interior of the pipe shows net mass loss. Hangingwall rhyolite shows mass changes that generally are much smaller than in the footwall. Felsic rocks in the silica-sericite alteration zone up to ≈ 200 m from the orebody have high δ18O values of 10–12‰, reflecting low-temperature alteration. The orebody occurs near the contact between a mainly tholeiitic rhyolite footwall and an overlying sequence of mildly calc-alkaline rhyolite then andesite.  相似文献   
93.
A new record from Potato Lake, central Arizona, details vegetation and climate changes since the mid-Wisconsin for the southern Colorado Plateau. Recovery of a longer record, discrimination of pine pollen to species groups, and identification of macrofossil remains extend Whiteside's (1965) original study. During the mid-Wisconsin (ca. 35,000-21,000 yr B.P.) a mixed forest of Engelmann spruce (Picea engelmannii) and other conifers grew at the site, suggesting a minimum elevational vegetation depression of ca. 460 m. Summer temperatures were as much as 5°C cooler than today. During the late Wisconsin (ca. 21,000-10,400 yr B.P.), even-cooler temperatures (7°C colder than today; ca. 800 m depression) allowed Engelmann spruce alone to predominate. Warming by ca. 10,400 yr B.P. led to the establishment of the modern ponderosa pine (Pinus ponderosa) forest. Thus, the mid-Wisconsin was not warm enough to support ponderosa pine forests in regions where the species predominates today. Climatic estimates presented here are consistent with other lines of evidence suggesting a cool and/or wet mid-Wisconsin, and a cold and/or wet late-Wisconsin climate for much of the Southwest. Potato Lake was almost completely dry during the mid-Holocene, but lake levels increased to near modern conditions by ca. 3000 yr B.P.  相似文献   
94.
95.
96.
The impact of suspended mussel culture (Mytilus edulis, M. trossulus) on the benthos of a small Nova Scotia cove (7 m depth) was assessed using meehods involving both benthic metabolism and community structure. Due to deposition of mussel feces and pseudofeces, sedimentation rate was higher under the mussel culture lines than at an adjacent reference site of similar sediment texture. Porewater profiles of sediment sulfate and sulfide indicated greater anaerobic metabolism at the mussel site than at the reference site, but sulfide was absent from the upper centimeters of sediments under the mussels. Seasonal measures of sediment oxygen demand showed little change between sites, but maximum rates of ammonium release at the mussel site were twice the highest rates measured at the reference site. Abundance of benthic macrofauna was higher at the reference site, but biomass was generally lower. Biomass at the mussel site was dominated by molluscs (Ilyanassa spp. andNucula tenuisulcata), that were attracted to mussels fallen from the culture and/or enriched organic matter due to biodeposition. Species diversity was lower at the reference site due to the dominance of the polychaeteNephtys neotena. Abundance-biomass comparisons (ABC method) of faunal analysis did not indicate any impact of biodeposition at this site: however, disturbance did not result in a typical assemblage of small opportunistic species anticipated with this method. Cluster analysis of macrofauna usually provided a clear separation between the sites. Since the contruction of a causeway (1968), foraminifera species composition showed a temporal response to temperature changes in the cove by shifting toward calcareous species, but assemblages downcore showed little or no relationship to aquaculture impacts. Although there is a shift toward anaerobic metabolism at the mussel lines, the impact of mussels falling to the sediments was more noticeable in benthic community structure than was any impact due to organic sedimentation or hypoxia. In general the impact of aquaculture on the benthos appeared to be minor. Furtyher assesment of these consequences may mandate both taxonomic and energetic approaches to impact assessment.  相似文献   
97.
A study designed to evaluate ground water quality changes resulting from spreading oil-field brine on roads for ice and dust control was conducted using a gravel roadbed that received weekly applications of brine eight times during the winter phase and 11 times during the summer phase of the study. A network of 11 monitoring wells and five pressure-vacuum lysimeters was installed to obtain ground water and soil water samples. Thirteen sets of water- quality samples were collected and analyzed for major ions, trace metals, and volatile organic compounds. Two sets of samples were taken prior to brine spreading, four sets during winter-phase spreading, five sets during summer- phase spreading, and two sets during the interim between the winter and summer phases. A brine plume delineated by elevated specific-conductance values and elevated chloride concentrations developed downgradient of the roadbed during both the winter and summer phases. The brine plume caused chloride concentrations in ground water samples to exceed U.S. EPA public drinking-water standards by two-fold during the winter phase and five-fold during the summer phase. No other major ions, trace metals, or volatile organic compounds exceeded the standards during the winter or summer phases. More than 99 percent dilution of the solutes in the brine occurred between the roadbed surface and the local ground water flow system. Further attenuation of calcium, sodium, potassium, and strontium resulted from adsorption, whereas further attenuation of benzene resulted from volatilization and adsorption.  相似文献   
98.
The historical records of Kilauea and Mauna Loa volcanoes reveal that the rough-surfaced variety of basalt lava called aa forms when lava flows at a high volumetric rate (>5–10 m3/s), and the smooth-surfaced variety called pahoehoe forms at a low volumetric rate (<5–10 m3/s). This relationship is well illustrated by the 1983–1990 and 1969–1974 eruptions of Kilauea and the recent eruptions of Mauna Loa. It is also illustrated by the eruptions that produced the remarkable paired flows of Mauna Loa, in which aa formed during an initial short period of high discharge rate (associated with high fountaining) and was followed by the eruption of pahoehoe over a sustained period at a low discharge rate (with little or no fountaining). The finest examples of paired lava flows are those of 1859 and 1880–1881. We attribute aa formation to rapid and concentrated flow in open channels. There, rapid heat loss causes an increase in viscosity to a threshold value (that varies depending on the actual flow velocity) at which, when surface crust is torn by differential flow, the underlying lava is unable to move sufficiently fast to heal the tear. We attribute pahoehoe formation to the flowage of lava at a low volumetric rate, commonly in tubes that minimize heat loss. Flow units of pahoehoe are small (usually <1 m thick), move slowly, develop a chilled skin, and become virtually static before the viscosity has risen, to the threshold value. We infer that the high-discharge-rate eruptions that generate aa flows result from the rapid emptying of major or subsidiary magma chambers. Rapid near-surface vesiculation of gas-rich magma leads to eruptions with high discharge rates, high lava fountains, and fast-moving channelized flows. We also infer that long periods of sustained flow at a low discharge rate, which favor pahoehoe, result from the development of a free and unimpeded pathway from the deep plumbing system of the volcano and the separation of gases from the magma before eruption. Achievement of this condition requires one or more episodes of rapid magma excursion through the rift zone to establish a stable magma pathway.  相似文献   
99.
100.
Sulfur isotopic disequilibrium is commonly observed between associated pyrite and copper sulfides in NW Queensland. A sulfur isotopic study of copper mineralization in dolomites at Paradise Valley and arenites at Mammoth has allowed the significance of such disequilibrium to be evaluated. Copper mineralization at Paradise Valley is characterized by a greater enrichment in 34S, with δ34S values often greater than +30‰, for both copper sulfides and associated syngenetic/diagneetic pyrite. At Mammoth, copper sulfides have isotopic compositions (δ34S=?15.9 to ?0.3‰) transitional between disseminated syngenetic/diagenetic pyrite (δ34S=?5.7 to ?1.7‰) and epigenetic vein pyrite (δ34S=?17.9 to ?7.1‰) suggesting progressive reaction and replacement of syngenetic/diagenetic pyrite by a copper-bearing mineralizing fluid under oxidizing conditions. The isotopic data, within the constraints imposed by geological and geochemical factors, support a model of reaction between copper-bearing mineralizing fluids and pre-existing syngenetic/diagenetic pyrite for both the carbonate- and arenite-hosted deposits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号