首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   5篇
测绘学   4篇
大气科学   5篇
地球物理   23篇
地质学   20篇
海洋学   1篇
天文学   9篇
自然地理   10篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   5篇
  2009年   4篇
  2008年   5篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   6篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1971年   1篇
排序方式: 共有72条查询结果,搜索用时 31 毫秒
21.
3D Kirchhoff migration (KM) smears a trace's time sample along a quasi-ellipsoid in the model space. This is a costly and sometimes noisy process as reflection energy is smeared far away from the actual reflector position, introducing far-field migration artefacts. As a reduced form of 3D KM, 3D wavepath migration (WM) smears a picked reflection arrival to a small Fresnel zone portion centred about the specular reflection point, leading to fewer migration artefacts and reduced computation time. Both the traveltime and the angle of incidence are required by WM for locating the specular reflection point. Our results with 3D prestack synthetic data show that WM generates fewer migration artefacts and can sometimes define complex structure better than KM. Our results with 3D prestack field data show that WM can mostly suppress migration artefacts and can sometimes resolve reflection interfaces better than KM. The CPU comparison shows that, for both the synthetic and field data examples, WM can be more than an order of magnitude faster than KM. The limitation with 3D WM is that the angle of incidence calculation is sensitive to the recording geometry and the signal-to-noise (S/N) ratio, which can lead to blurred images.  相似文献   
22.
Interferometric/daylight seismic imaging   总被引:8,自引:0,他引:8  
  相似文献   
23.
24.
25.
This paper reports on a study dealing with the rhyolitic inselbergs of Hadjer el Khamis that formed palaeoislands during Lake Mega‐Chad events. Field observations have shown that: (1) conglomeratic patches of immature to mature clasts are preserved at the feet of the Hadjer el Khamis inselbergs; (2) in cross‐section, their pro?le reveals a well de?ned cliff–platform junction at a constant elevation (325 m). The monolithological clasts show all degrees of roundness, from angular cobbles to well rounded pebbles. This wide range of maturity suggests a coastal origin for these cobbles. The system was permanently fed with angular clasts, which were progressively worn by waves. Cobbles that were wave‐worked for the longest time are the best rounded. The cliff–platform junction is the result of erosion by waves, which attacked and undercut the inselberg cliffs during Lake Mega‐Chad events. Asymmetrical erosion pro?les moreover suggest a wind regime dominated by SW to NE oriented winds. These interpretations have two implications. The elevation of the cliff–platform junction is an indication of the highest water level of Lake Mega‐Chad at 320–325 m, which is in agreement with other observations elsewhere in the basin. The SW to NE oriented winds show that monsoon‐related winds were prevalent during Lake Mega‐Chad events, suggesting the Inter‐Tropical Convergence Zone was located higher in latitude than today. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
26.
27.
This paper presents an overview of some of the most significant, recent to ancient, littoral morpho-sedimentary structures and deposits from the Lake Turkana Basin. We highlight the importance of wave-related sedimentary processes in lakes, and more specifically in rift lakes. In the published literature, references to wave-dominated shorelines are mainly in regards to coastal marine environments. However, numerous modern lakes exhibit typical wave-dominated littoral landforms, and related sedimentary deposits are known from several paleolake successions in the geological record. Wave-related processes are often of relatively minor importance in depositional models for lacustrine environments. Classical models emphasize clastics transported by rivers, which are then distributed by fan-deltas and/or deltas into a water body of fluctuating depth, where reworking of clastics is limited in the littoral domain, and episodic in deep waters. Modern processes in Lake Turkana and the exposed paleolake deposits of the Turkana Basin demonstrate that this view is incomplete. Wave-dominated shorelines are evident (1) for modern Lake Turkana based on prominent and active littoral landforms (e.g., beach ridges, sand spits, washover fans, and arcuate-cuspate deltas); (2) for the Holocene (African Humid Period) climate-driven highstand of Megalake Turkana and its subsequent forced regression based on conspicuous raised beach ridges and spits; and (3) for the Pliocene–Pleistocene (Omo Group, Nachukui Formation) from typical nearshore sedimentary facies and stratigraphic architectures associated with paleolake Turkana. These examples from the Turkana Basin coupled with examples from other lacustrine settings, suggest that wave-dominated clastic shorelines represent significant portions of existing and ancient lake-shores. As this view contrasts with classic depositional models for lakes, notably for those found in rift setting, we also present examples of wave-influenced littoral landforms from other lakes of the East African Rift System. Identifying lacustrine paleoshorelines from typical clastic landforms and deposits is the key to the spatial reconstruction of lakes over time, and to determine transgressive–regressive cycles. Waves action is an important agent in lakes for the erosion, transport, and deposition of clastics at the basin-scale, an aspect that needs to be integrated in sedimentary models.  相似文献   
28.
29.
Traditional positioning methods, such as conventional Real Time Kinematic (cRTK) rely upon local reference networks to enable users to achieve high-accuracy positioning. The need for such relatively dense networks has significant cost implications. Precise Point Positioning (PPP) on the other hand is a positioning method capable of centimeter-level positioning without the need for such local networks, hence providing significant cost benefits especially in remote areas. This paper presents the state-of-the-art PPP method using both GPS and GLONASS measurements to estimate the float position solution before attempting to resolve GPS integer ambiguities. Integrity monitoring is carried out using the Imperial College Carrier-phase Receiver Autonomous Integrity Monitoring method. A new method to detect and exclude GPS base-satellite failures is developed. A base-satellite is a satellite whose measurements are differenced from other satellite’s measurements when using between-satellite-differenced measurements to estimate position. The failure detection and exclusion methods are tested using static GNSS data recorded by International GNSS Service stations both in static and dynamic processing modes. The results show that failure detection can be achieved in all cases tested and failure exclusion can be achieved for static cases. In the kinematic processing cases, failure exclusion is more difficult because the higher noise in the measurement residuals increases the difficulty to distinguish between failures associated with the base-satellite and other satellites.  相似文献   
30.
Time reversal mirrors can be used to backpropagate and refocus incident wavefields to their actual source location, with the subsequent benefits of imaging with high‐resolution and super‐stacking properties. These benefits of time reversal mirrors have been previously verified with computer simulations and laboratory experiments but not with exploration‐scale seismic data. We now demonstrate the high‐resolution and the super‐stacking properties in locating seismic sources with field seismic data that include multiple scattering. Tests on both synthetic data and field data show that a time reversal mirror has the potential to exceed the Rayleigh resolution limit by factors of 4 or more. Results also show that a time reversal mirror has a significant resilience to strong Gaussian noise and that accurate imaging of source locations from passive seismic data can be accomplished with traces having signal‐to‐noise ratios as low as 0.001. Synthetic tests also demonstrate that time reversal mirrors can sometimes enhance the signal by a factor proportional to the square root of the product of the number of traces, denoted as N and the number of events in the traces. This enhancement property is denoted as super‐stacking and greatly exceeds the classical signal‐to‐noise enhancement factor of . High‐resolution and super‐stacking are properties also enjoyed by seismic interferometry and reverse‐time migration with the exact velocity model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号