首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   5篇
测绘学   4篇
大气科学   5篇
地球物理   23篇
地质学   20篇
海洋学   1篇
天文学   9篇
自然地理   10篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   5篇
  2009年   4篇
  2008年   5篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   6篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1971年   1篇
排序方式: 共有72条查询结果,搜索用时 234 毫秒
11.
Deglacial sequences typically include backstepping grounding zone wedges and prevailing glaciomarine depositional facies. However, in coastal domains, deglacial sequences are dominated by depositional systems ranging from turbiditic to fluvial facies. Such deglacial sequences are strongly impacted by glacio‐isostatic rebound, the rate and amplitude of which commonly outpaces those of post‐glacial eustatic sea‐level rise. This results in a sustained relative sea‐level fall covering the entire depositional time interval. This paper examines a Late Quaternary, forced regressive, deglacial sequence located on the North Shore of the St. Lawrence Estuary (Portneuf Peninsula, Québec, Canada) and aims to decipher the main controls that governed its stratigraphic architecture. The forced regressive deglacial sequence forms a thick (>100 m) and extensive (>100 km2) multiphased deltaic complex emplaced after the retreat of the Laurentide Ice Sheet margin from the study area ca 12 500 years ago. The sedimentary succession is composed of ice‐contact, glaciomarine, turbiditic, deltaic, fluvial and coastal depositional units. A four‐stage development is recognized: (i) an early ice‐contact stage (esker, glaciomarine mud and outwash fan); (ii) an in‐valley progradational stage (fjord head or moraine‐dammed lacustrine deltas) fed by glacigenics; (iii) an open‐coast deltaic progradation, when proglacial depositional systems expanded beyond the valley outlets and merged together; and (iv) a final stage of river entrenchment and shallow marine reworking that affected the previously emplaced deltaic complex. Most of the sedimentary volume (10 to 15 km3) was emplaced during the three‐first stages over a ca 2 kyr interval. In spite of sustained high rates of relative sea‐level fall (50 to 30 mm·year?1), delta plain accretion occurred up to the end of the proglacial open‐coast progradational stage. River entrenchment only occurred later, after a significant decrease in the relative sea‐level fall rates (<30 mm·year?1), and was concurrent with the formation and preservation of extensive coastal deposits (raised beaches, spit platform and barrier sands). The turnaround from delta plain accretion to river entrenchment and coastal erosion is interpreted to be a consequence of the retreat of the ice margin from the river drainage basins that led to the drastic drop of sediment supply and the abrupt decrease in progradation rates. The main internal stratigraphic discontinuity within the forced regressive deglacial sequence does not reflect changes in relative sea‐level variations.  相似文献   
12.
Using an Atmospheric Global Circulation Model, we assess the relevance of selected atmospheric mechanisms for climate evolution of Saharan and sub-Saharan regions since the Miocene. First, we test the influence of the East-African Rift System uplift on atmospheric dynamics. Although the uplift played an important role in triggering East-African rainfall, no significant impact over central and western Africa has been detected. We also analyse the feedbacks of a giant lake on the climate of Chad basin. First results infer a negative feedback of the giant lake on the water balance, as convection is weakened by the cold water surface and as water evaporated from the lake does not feed the basin hydrological cycle. Lastly, we suggest that colder than present sea surface temperatures over the Gulf of Guinea reinforce the West-African monsoon, by enhancing the moisture advection engine via stronger thermal contrast between the ocean and the continent.  相似文献   
13.
Ice-core samples from Upper Fremont Glacier (UFG), Wyoming, were used as proxy records for the chemical composition of atmospheric deposition. Results of analysis of the ice-core samples for stable isotopes of nitrogen (δ15N, ) and sulfur (δ34S, ), as well as and deposition rates from the late-1940s thru the early-1990s, were used to enhance and extend existing National Atmospheric Deposition Program/National Trends Network (NADP/NTN) data in western Wyoming. The most enriched δ34S value in the UFG ice-core samples coincided with snow deposited during the 1980 eruption of Mt. St. Helens, Washington. The remaining δ34S values were similar to the isotopic composition of coal from southern Wyoming. The δ15N values in ice-core samples representing a similar period of snow deposition were negative, ranging from -5.9 to -3.2 ‰ and all fall within the δ15N values expected from vehicle emissions. Ice-core nitrate and sulfate deposition data reflect the sharply increasing U.S. emissions data from 1950 to the mid-1970s.  相似文献   
14.
15.
Garnet in metapelites from the Wölz Complex of the Austroalpine crystalline basement east of the Tauern Window characteristically consists of two growth phases, which preserve a comprehensive record of the geothermal history during polymetamorphism. From numerical modelling of garnet formation, detailed information on the pressure–temperature–time (P–T–t) evolution during prograde metamorphism is obtained. In that respect, the combined influences of chemical fractionation associated with garnet growth, modification of the original growth zoning through intragranular diffusion and the nucleation history on the chemical zoning of garnet as P and T change during growth are considered. The concentric chemical zoning observed in garnet and the homogenous rock matrix, which is devoid of chemical segregation, render the simulation of garnet growth through successive equilibrium states reliable. Whereas the first growth phase of garnet was formed at isobaric conditions of ~3.8 kbar at low heating/cooling rates, the second growth phase grew along a Barrovian P–T path marked with a thermal peak of ~625°C at ~10 kbar and a maximum in P of ~10.4 kbar at ~610°C. For the heating rate during the growth of the second phase of garnet, average rates faster than 50°C Ma?1 are obtained. From geochronological investigations the first growth phase of garnet from the Wölz Complex pertains to the Permian metamorphic event. The second growth phase grew in the course of Eo-Alpine metamorphism during the Cretaceous.  相似文献   
16.
17.
Pale-blue to pale-green tourmalines from the contact zone of Permian pegmatites to mica schists and marbles from different localities of the Austroalpine basement units (Rappold Complex) in Styria, Austria, are characterized. All these Mg-rich tourmalines have small but significant Li contents, up to 0.29 wt% Li2O, and can be characterized as dravite, with FeO contents of ?~?0.9–2.7 wt%. Their chemical composition varies from X (Na0.67Ca0.19?K0.02?0.12) Y (Mg1.26Al0.97Fe2+ 0.36Li0.19Ti4+ 0.06Zn0.01?0.15) Z (Al5.31?Mg0.69) (BO3)3 Si6O18 V (OH)3? W [F0.66(OH)0.34], with a?=?15.9220(3), c?=?7.1732(2) Å to X (Na0.67Ca0.24?K0.02?0.07) Y (Mg1.83Al0.88Fe2+ 0.20Li0.08Zn0.01Ti4+ 0.01?0.09) Z (Al5.25?Mg0.75) (BO3)3 Si6O18 V (OH)3? W [F0.87(OH)0.13], with a?=?15.9354(4), c?=?7.1934(4) Å, and they show a significant Al-Mg disorder between the Y and the Z sites (R1?=?0.013–0.015). There is a positive correlation between the Ca content and?<?Y-O?>?distance for all investigated tourmalines (r?≈?1.00), which may reflect short-range order configurations including Ca and Fe2+, Mg, and Li. The tourmalines have XMg (XMg?=?Mg/Mg?+?Fetotal) values in the range 0.84–0.95. The REE patterns show more or less pronounced negative Eu and positive Yb anomalies. In comparison to tourmalines from highly-evolved pegmatites, the tourmaline samples from the border zone of the pegmatites of the Rappold Complex contain relatively low amounts of total REE (~8–36 ppm) and Th (0.1–1.8 ppm) and have low LaN/YbN ratios. There is a positive correlation (r?≈?0.91) between MgO of the tourmalines and the MgO contents of the surrounding mica schists. We conclude that the pegmatites formed by anatectic melting of mica schists and paragneisses in Permian time. The tourmalines crystallized from the pegmatitic melt, influenced by the metacarbonate and metapelitic host rocks.  相似文献   
18.
A new intrinsic-colour calibration ((b-y)o-β) is presented for the uvby-β photometric system, making use of re-calibrated Hipparcos parallaxes and published reddening maps. This new calibration for (b-y)o-β, our Eq. (1), has been based upon stars with dHip<70pc in the photometric catalogues of Schuster and Nissen (1988), Schuster et al., 2004, Schuster et al., 2006, provides a small dispersion, ±0.009, and has a positive “standard” +2.239Δβ coefficient, which is not too different from the coefficients of Crawford (1975a, +1.11) and of Olsen (1988, +1.34). For 61 stars with spectra from CASPEC, UVES/VLT, and FIES/NOT databases, without detectable Na I lines, the average reddening value E(b-y)=-0.001±0.002 shows that any zero-point correction to our intrinsic-colour equation must be minuscule.  相似文献   
19.
The results of an observational campaign on the new δ Scuti pulsator HD 207331 are reported. The star was observed photometrically from August 26 to September 2, 2009 from the Observatorio San Pedro Mártir (0.84-m telescope, Mexico) and the Observatorio del Teide (0.80-m telescope, Spain). An overall run of 53.8 h of useful data was collected from the two sites. Four oscillation frequencies for HD 207331 have been found above a 99% confidence level. These results confirm the multiperiodic pulsation nature of the star suggested in previous observations with sparse data. Spectroscopic observations carried out in 2009 allowed us to derive its spectral type and luminosity class as well as to estimate its rotation rate. A simple comparison with models is performed.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号