Despite the importance of organic-rich shales, microstructural characterization and theoretical modeling of these rocks are limited due to their highly heterogeneous microstructure, complex chemistry, and multiscale mechanical properties. One of the sources of complexity in organic-rich shales is the intricate interplay between microtextural evolution and kerogen maturity. In this study, a suite of experimental and theoretical microporomechanics methods are developed to associate the mechanical properties of organic-rich shales both to their maturity level and to the organic content at micrometer and sub-micrometer length scales. Recent results from chemomechanical characterization experiments involving grid nanoindentation and energy-dispersive X-ray spectroscopy (EDX) are used in new micromechanical models to isolate the effects of maturity levels and organic content from the inorganic solids. These models enable attribution of the role of organic maturity to the texture of the indented material, with immature systems exhibiting a matrix-inclusion morphology, while mature systems exhibit a polycrystal morphology. Application of these models to the interpretation of nanoindentation results on organic-rich shales allows us to identify unique clay mechanical properties that are consistent with molecular simulation results for illite and independent of the maturity of shale formation and total organic content. The results of this investigation contribute to the design of a multiscale model of the fundamental building blocks of organic-rich shales, which can be used for the design and validation of multiscale predictive poromechanics models. 相似文献
The occurrence of a freshwater lens in the Paraguayan Chaco, 900 km away from the ocean, is reported. It is located underneath sandstone hills, surrounded by lowlands with predominantly saline groundwater. Its geometry was delineated using geoelectrical and electromagnetic investigations. The unusual height of the fresh groundwater level can be attributed to the presence of a confining layer at depth. The lens receives its recharge exclusively from rainfall during the hot and humid summer months. It predominantly contains water predating the atmospheric atomic bomb tests, some of it probably up to a thousand or more years old. The water balance shows that extraction currently does not exceed recharge in normal years. However, the available volume of groundwater leaves little room for a further increase of extraction in the future. Recharge is augmented by return flow from thousands of latrines and cess pits, and this has lead to widespread contamination of the groundwater by faecal bacteria. 相似文献
Lack of high-spatial-resolution soil and sediment arsenic data for Hawai‘i has generated substantial disagreement between researchers and regulators regarding the magnitude of natural levels of arsenic in Hawai‘i and rendered difficult the defining of areas of anthropogenically elevated arsenic. Our earlier research into the occurrence of arsenic in terrestrial and marine environments revealed widely disparate concentrations of arsenic with no apparent spatial pattern. To better understand the distribution and abundance of arsenic in soils and sediments of O‘ahu, we collected an additional 64 samples at locations chosen to represent different environments with varying degrees of human impact. We found surface arsenic values that ranged from 0.28 to 740 ppm with a median concentration of 8.1 ppm, which is above the global median of 5 ppm and US soil median of 5.2 ppm. Higher concentrations of arsenic (up to 913 ppm) were encountered at depth in soil cores. The median arsenic in streambed sediments from one of our earlier studies of 6.1 ppm was comparable to the conterminous US median of 6.3 ppm; however, we encountered arsenic concentrations as high as 43.9 ppm (median = 8.60 ppm, n = 75) in marine sediments in recent work off the leeward coast of O‘ahu. Overall, arsenic in the soils and sediments of O‘ahu is elevated relative to world and national values, but there still is no readily discernible pattern in the distribution of arsenic to explain these elevated values. 相似文献
We report on how visual realism might influence map-based route learning performance in a controlled laboratory experiment with 104 male participants in a competitive context. Using animations of a dot moving through routes of interest, we find that participants recall the routes more accurately with abstract road maps than with more realistic satellite maps. We also find that, irrespective of visual realism, participants with higher spatial abilities (high-spatial participants) are more accurate in memorizing map-based routes than participants with lower spatial abilities (low-spatial participants). On the other hand, added visual realism limits high-spatial participants in their route recall speed, while it seems not to influence the recall speed of low-spatial participants. Competition affects participants’ overall confidence positively, but does not affect their route recall performance neither in terms of accuracy nor speed. With this study, we provide further empirical evidence demonstrating that it is important to choose the appropriate map type considering task characteristics and spatial abilities. While satellite maps might be perceived as more fun to use, or visually more attractive than road maps, they also require more cognitive resources for many map-based tasks, which is true even for high-spatial users. 相似文献
The role of technology in combatting climate change through mitigation and adaptation to its inevitable impacts has been acknowledged and highlighted by the Parties to the United Nations Framework Convention on Climate Change (UNFCCC). In the developing world, this has received particular attention through the technology needs assessment (TNA) process. As Parties put forward their national pledges to combat climate change, the scarcity of resources makes it important to assess (i) whether national processes designed to tackle climate change are working together and (ii) whether existing national processes should be terminated with the initiation of new ones. This study presents an assessment of the existing TNA process and its linkages to the nationally determined contributions (NDCs) under the Paris Agreement. The conclusions stem from an assessment of the TNAs completed to date, as well as 71 NDCs from developing countries at various stages of the TNA process. The analyses show that further developing the TNAs could play a vital role in filling gaps in the existing NDCs, specifically those relating to identifying appropriate technologies, their required enabling framework conditions and preparing implementation plans for their transfer and diffusion.
Key policy insights
The full potential of the TNAs has still to be rolled out in many countries.
Developing countries can maximize the potential of their TNAs by further developing them to explicitly analyse what is needed to implement existing NDCs, including by better aligning their focus, scope and up-to-dateness with the priority sectors included in the NDCs.
Requests of developing countries for international assistance, through technology transfer, will be better guided by the completion of the TNA process.
Policies for strengthening the NDCs will benefit from the results of completed, ongoing and future TNA processes.
The majority of emissions of nitrous oxide – a potent greenhouse gas (GHG) – are from agricultural sources, particularly nitrogen fertilizer applications. A growing focus on these emission sources has led to the development in the United States of GHG offset protocols that could enable payment to farmers for reducing fertilizer use or implementing other nitrogen management strategies. Despite the development of several protocols, the current regional scope is narrow, adoption by farmers is low, and policy implementation of protocols has a significant time lag. Here we utilize existing research and policy structures to propose an ‘umbrella’ approach for nitrogen management GHG emissions protocols that has the potential to streamline the policy implementation and acceptance of such protocols. We suggest that the umbrella protocol could set forth standard definitions common across multiple protocol options, and then modules could be further developed as scientific evidence advances. Modules could be developed for specific crops, regions, and practices. We identify a policy process that could facilitate this development in concert with emerging scientific research and conclude by acknowledging potential benefits and limitations of the approach.
Key policy insights
Agricultural greenhouse gas market options are growing, but are still underutilized
Streamlining protocol development through an umbrella process could enable quicker development of protocols across new crops, regions, and practices
Effective protocol development must not compromise best available science and should follow a rigorous pathway to ensure appropriate implementation
While carbon pricing is widely seen as a crucial element of climate policy and has been implemented in many countries, it also has met with strong resistance. We provide a comprehensive overview of public perceptions of the fairness of carbon pricing and how these affect policy acceptability. To this end, we review evidence from empirical studies on how individuals judge personal, distributional and procedural aspects of carbon taxes and cap-and-trade. In addition, we examine preferences for particular redistributive and other uses of revenues generated by carbon pricing and their role in instrument acceptability. Our results indicate a high concern over distributional effects, particularly in relation to policy impacts on poor people, in turn reducing policy acceptability. In addition, people show little trust in the capacities of governments to put the revenues of carbon pricing to good use. Somewhat surprisingly, most studies do not indicate clear public preferences for using revenues to ensure fairer policy outcomes, notably by reducing its regressive effects. Instead, many people prefer using revenues for ‘environmental projects’ of various kinds. We end by providing recommendations for improving public acceptability of carbon pricing. One suggestion to increase policy acceptability is combining the redistribution of revenue to vulnerable groups with the funding for environmental projects, such as on renewable energy.
Key policy insights
If people perceive carbon pricing instruments as fair, this increases policy acceptability and support.
People’s satisfaction with information provided by the government about the policy instrument increases acceptability.
While people express high concern over uneven distribution of the policy burden, they often prefer using carbon pricing revenues for environmental projects instead of compensation for inequitable outcomes.
Recent studies find that people’s preferences shift to using revenues for making policy fairer if they better understand the functioning of carbon pricing, notably that relatively high prices of CO2-intensive goods and services reduce their consumption.
Combining the redistribution of revenue to support both vulnerable groups and environmental projects, such as on renewable energy, seems to most increase policy acceptability.
Deficient management of cinnabar mining left the San Joaquín region with high concentrations of mercury in its soils (2.4 – 4164 mg kg-1). Numerous cinnabar mines have contributed to the dispersion of mercury into agricultural (0.5 –314 mg kg-1) and forest (0.2 – 69 mg kg-1) soils. Sediments are a natural means of transportation for mercury, causing its spreading, especially in areas near mine entrances (0.6 – 687 mg kg-1). The nearness of maize crops to mines favors mercury accumulation in the different plant structures, such as roots, stems, leaves, and grain (0.04 – 8.2 mg kg-1); these being related to mercury volatilization and accumulation in soils. Mercury vapor present in the settlements could indicate a constant volatilization from lands and soils (22 – 153 ng m-3). The mercury levels found in the soils, in maize grain, and in the air resulted greater than the standards reported by the Official Mexican Norm (NOM) and the World Health Organization (WHO). Mercury in rainwater is due mainly to the presence of suspended atmospheric particles, later deposited on the surface (1.5 – 339 μg |-1). Mercury dissolution was found in the drinking water (10 – 170 ng |-1), with concentrations below those established by the NOM and the WHO. The contamination existing in the San Joaquín region does not reach the levels of the world’s greatest mercury producers: Almaden (Spain) and Idrija (Slovenia). It is, however, like that found in other important second degree world producers such as Guizhou (China). The population of San Joaquín, as well as its surrounding environment, are constantly exposed to mercury contamination, thus making a long term monitoring necessary to determine its effects, especially to people. 相似文献
This article contributes to the understanding of how to proceed with the development of index-insurance in order to reach extended population coverage with the insurance. The approach is applied to an example from a region in Tanzania. One of the main coping strategies that resource-poor households rely on to manage risks related to fluctuations in income flows is risk-sharing in informal networks. An informal network is an ideal way of managing idiosyncratic shocks, but once such shocks become covariate and affect whole communities, as is the case with most climate change impacts, informal networks become insufficient since the majority of risk-sharers will be affected by the shock at the same time. This paper proposes a collective approach to index-insurance in which the members of an informal network will be insured as one insurance taker. The paper raises a conceptual argument that targeting households through existing informal networks will remove a number of prevailing barriers to the take-up of insurance and consequently the approach has the potential to increase households’ resilience to climate change impacts. The policy implications of the conclusions are significant since the number of covariate shocks is predicted to increase with climate change. 相似文献
We present a finite-element study of stress perturbation in evolving compressive and extensional strike-slip fault bridges. The results are compared with a fracture study of a compressive bridge at St Donats, UK. Horizontally interbedded calcareous mudstone and bioclastic calcilutite at St Donats have a distinct vertical permeability anisotropy. This sedimentary sequence behaves as a set of horizontal aquifers. The fluid flow in these aquifers is sensitive to mean stress gradients. Paleostress analysis of field fracture data, verified by finite-element modelling, indicates a rotation of σ1 towards parallelism with boundary faults inside the growing compressive bridge. Boundary faults and bridge faults recorded numerous fluid flow events. The modelled mean stress pattern shows a regional maximum within the bridge and local maxima/minima pairs at boundary fault tips.Finite-element modelling of an extensional bridge indicates that σ3 rotates towards parallelism with boundary faults. The mean stress pattern is similar to the pattern in compressive bridge but with maxima and minima locations interchanged. The stress patterns are reestablished by each stress build-up preceding the rupturation of the boundary faults throughout the development stages of strike-slip fault bridges. Mean stress gradients developed pre-failure control the fluid flow in fractures of the strike-slip fault system at and after the end of each stress build-up and the fluid flow in boundary faults post-failure. Fracture reactivation and new fracture generation within an evolving bridge is a process consisting of multiple successive events that retain the storage capacity of the bridge. Rupture and sealing of the main bounding-faults is a step-wise process that opens and closes fluid conduits between areas with different pressures. 相似文献