首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   3篇
  国内免费   3篇
大气科学   6篇
地球物理   18篇
地质学   22篇
海洋学   32篇
天文学   8篇
综合类   1篇
自然地理   8篇
  2021年   1篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2011年   2篇
  2010年   3篇
  2009年   10篇
  2008年   5篇
  2007年   3篇
  2006年   7篇
  2005年   5篇
  2004年   1篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1979年   3篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1970年   1篇
  1961年   2篇
排序方式: 共有95条查询结果,搜索用时 19 毫秒
91.
We report the first occurrence of ice-rafted dropstones in mid-oceanic sediments belonging to an ocean plate stratigraphy within a Neoproterozoic accretionary complex on Llanddwyn Island, Wales, UK. Dropstones of sandstone, chert, and basalt occur as matrix-supported exotic clasts in a 1 m-thick, hemi-pelagic mafic mudstone; the largest clast is 20 × 25 cm across. These dropstones occur specifically in hemi-pelagic mafic mudstone that is located at the structural top of ocean plate stratigraphy that records a ridge-trench transition; they are supplementary to dropstones associated with extensive tillites reported in shallow marine sequences of continental shelf facies and in back-arc basins.  相似文献   
92.
Structure of air flow separation over wind wave crests   总被引:1,自引:0,他引:1  
Air flow over wind waves generated in a wind-wave tunnel was visualized by numerous tiny suspended particles (zinc stearate), and instantaneous air flow fields over about one wavelength of wind waves were obtained. Air flow separation was detected over the wave crest in about a half of the samples. In such cases, the separation started near the crest about half of the time, with a vortex trapped over the convergence point of the surface flow which appeared at the leeward face of the crest. This structure was much different from a previously imagined picture in which the separation started at the convergence point. The high frequency of its occurrence suggested the stability of this structure. However, even when this structure was clearly seen, the structure behind the vortex to the next wave crest had various patterns. This variety seems to be related to an instability of the high-shear layer accompanied by separation. Other varieties were also seen, such as the occurrence of separation without the above mentioned structure, as well as the existence of non-separated air flow structures. These varieties seem to be related to the variability of individual wind wave crests. An analysis of correlation between the wave form and the air flow structure over it shows that there is a critical value of local gradient of wave form, above which the air flow always separates. This fact suggests a strong coupling between the air and the water, i.e., the local stress exerted on the water surface changes the nature of a wave crest, especially its form, and as a result, the air flow structure over it changes drastically.Decreased 21 November, 1981. Final draft of the paper prepared by Professor Yoshiaki Toba, Geophysical Institute, Tohoku University.  相似文献   
93.
An intermittently-smoking smoke-wire was devised to visualize the airflow structure over individual crests of actual wind waves. The device was used under a moderate wind 6 m s-1 (maximum speed in the vertical cross-section) at a fetch 3.8 m in a wind-wave tunnel. Airflow patterns with separation were clearly visualized over wind-wave crests which were not accompanied by wave breaking characterized by air entrainment. A classification of 41 samples of airflow structures showed that two distinct patterns (with and without separation) exist, with significant frequency of occurrence for each.  相似文献   
94.
95.
It has been thought that granitic crust,having been formed on the surface,must have survived through the Earth’s evolution because of its buoyancy.At subduction zones continental crust is predominantly created by arc magmatism and is returned to the mantle via sediment subduction,subduction erosion, and continental subduction.Granitic rocks,the major constituent of the continental crust,are lighter than the mantle at depths shallower than 270 km,but we show here,based on first principles calculations, that beneath 270 km they have negative buoyancy compared to the surrounding material in the upper mantle and transition zone,and thus can be subducted in the depth range of 270-660 km.This suggests that there can be two reservoirs of granitic material in the Earth,one on the surface and the other at the base of the mantle transition zone(MTZ).The accumulated volume of subducted granitic material at the base of the MTZ might amount to about six times the present volume of the continental crust.Our calculations also show that the seismic velocities of granitic material in the depth range from 270 to 660 km are faster than those of the surrounding mantle.This could explain the anomalous seismic-wave velocities observed around 660 km depth.The observed seismic scatterers and reported splitting of the 660 km discontinuity could be due to jadeite dissociation,chemical discontinuities between granitic material and the surrounding mantle,or a combination thereof.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号