首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   8篇
  国内免费   2篇
测绘学   7篇
大气科学   22篇
地球物理   46篇
地质学   97篇
海洋学   10篇
天文学   6篇
综合类   7篇
自然地理   7篇
  2023年   1篇
  2022年   6篇
  2021年   11篇
  2020年   16篇
  2019年   3篇
  2018年   26篇
  2017年   19篇
  2016年   23篇
  2015年   12篇
  2014年   16篇
  2013年   15篇
  2012年   8篇
  2011年   12篇
  2010年   6篇
  2009年   5篇
  2008年   6篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1976年   1篇
排序方式: 共有202条查询结果,搜索用时 62 毫秒
71.
Dislocation modelling of an earthquake fault is of great importance due to the fact that ground surface response may be predicted by the model. However, geological features of a fault cannot be measured exactly, and therefore these features and data involve uncertainties. This paper presents a Monte Carlo based random model of faults with finite element method incorporating split node technique to impose the effects of discontinuities. Length and orientation of the fault are selected as random parameters in the domain model, and hence geometrical uncertainties are encountered. Mean and standard deviation values, as well as probability density function of ground surface responses due to the dislocation are computed. Based on analytical and numerical calculation of dislocation, two approaches of Monte Carlo simulations are proposed. Various comparisons are examined to illustrate the capability of both methods for random simulation of faults.  相似文献   
72.
Water resources management is an important driver in social and economic development. Water shortage is one of the most critical issues threatening human welfare, public health, and ecosystems. This issue has turned into a major challenge in many river basins all around the world due to the imbalance in water supply and demand. Use of simulation models can be effective tools in providing water managers with scientifically supported decisions in dealing with complex and uncertain water resource systems. System dynamics approach serves as a management tool and may play an important role in understanding the cause–effect in water resources systems. In the present study, system dynamics approach was applied to simulate management strategies dealing with Tehran metropolitan water resources systems. In the developed model, the trend of water storage in the next 30-year period and the effectiveness of water supply strategies were simulated. The results showed that, despite the growing shortage of the water resources, optimal use of existing resources under appropriate strategies could reduce water deficit within the next 30 years.  相似文献   
73.
The main aims of the present study are to identify the major factors affecting hydrogeochemistry of groundwater resources in the Marand plain, NW Iran and to evaluate the potential sources of major and trace elements using multivariate statistical analysis such as hierarchical clustering analysis (HCA) and factor analysis (FA). To achieve these goals, groundwater samples were collected in three sampling periods in September 2013, May 2014 and September 2014 and analyzed with regard to ions (e.g., Ca2+, Mg2+, Na+ and K+, HCO3 ?, SO4 2?, Cl?, F? and NO3 ?) and trace metals (e.g., Cr, Pb, Cd, Mn, Fe, Al and As). The piper diagrams show that the majority of samples belong to Na–Cl water type and are followed by Ca–HCO3 and mixed Ca–Na–HCO3. Cross-plots show that weathering and dissolution of different rocks and minerals, ion exchange, reverse ion exchange and anthropogenic activities, especially agricultural activities, influence the hydrogeochemistry of the study area. The results of the FA demonstrate that 6 factors with 81.7% of total variance are effective in the overall hydrogeochemistry, which are attributed to geogenic and anthropogenic impacts. The HCA categorizes the samples into two clusters. Samples of cluster C1, which appear to have higher values of some trace metals like Pb and As, are spatially located at the eastern and central parts of the plain, while samples of cluster C2, which express the salinization of the groundwater, are situated mainly westward with few local exceptions.  相似文献   
74.
In order to identify factors affecting the distribution of Anabasis aphylla in rangelands of Iran, 132 climatic parameters which contributed to the species distribution (based on the ecological conditions of the study area) were selected. Factor analysis was then applied to determine the most important factors affecting species distribution. In the next stage, the spatial distribution map of An. aphylla throughout Iran was prepared. According to the results of factor analysis, ten factors with Eigenvalues greater than one explained 92.96% of the total variance. These factors were temperature below zero, winter rainfall, summer rainfall, wind, sunlight, warm season dust, rainfall in fall, thunderstorms, relative humidity in September, and cloudy days in winter and explained 34.34, 9.71, 9.69, 8.85, 5.99, 5.35, 4.97, 4.78, 4.73, and 4.51% of the total variance, respectively. Moreover, six vegetation types containing An. aphylla were identified throughout the country. These types were distributed in the central areas of Iran and also in patches within the southeastern parts of the country. The results showed that in addition to the nine above climatic factors, soil variables particularly salinity influence establishing the vegetation types in their distribution areas and the vegetation types are located in low to relatively high salinity, and soils with these salinity levels (low to relatively high salinity) are suitable for these types of plants.  相似文献   
75.
Clouds can influence climate through many complex interactions within the hydrological cycle. Due to the important effects of cloud cover on climate, it is essential to study its variability over certain geographical areas. This study provides a spatial and temporal distribution of sky conditions, cloudy, partly cloudy, and clear days, in Iran. Cloud fraction parameters were calculated based on the cloud product(collection 6_L2) obtained from the Moderate Resolution Imaging Spectroradiometer(MODIS) sensors on board the Terra(MOD06) and Aqua(MYD06) satellites. The cloud products were collected daily from January 1, 2003 to December 31, 2014(12 years) with a spatial resolution of 5 km × 5 km. First, the cloud fraction data were converted into a regular geographic coordinate network over Iran. Then, the estimations from both sensors were analyzed. Results revealed that the maximum annual frequency of cloudy days occurs along the southern shores of the Caspian Sea, while the minimum annual frequency occurs in southeast Iran. On average, the annual number of cloudy and clear-sky days was 88 and 256 d from MODIS Terra, as compared to 96 and 244 d from MODIS Aqua. Generally, cloudy and partly cloudy days decrease from north to south, and MODIS Aqua overestimates the cloudy and partly cloudy days compared to MODIS Terra.  相似文献   
76.
The interannual variation of precipitation in the southern part of Iran and its link with the large-scale climate modes are examined using monthly data from 183 meteorological stations during 1974–2005. The majority of precipitation occurs during the rainy season from October to May. The interannual variation in fall and early winter during the first part of the rainy season shows apparently a significant positive correlation with the Indian Ocean Dipole (IOD) and El Ni?o-Southern Oscillation (ENSO). However, a partial correlation analysis used to extract the respective influence of IOD and ENSO shows a significant positive correlation only with the IOD and not with ENSO. The southeasterly moisture flux anomaly over the Arabian Sea turns anti-cyclonically and transport more moisture to the southern part of Iran from the Arabian Sea, the Red Sea, and the Persian Gulf during the positive IOD. On the other hand, the moisture flux has northerly anomaly over Iran during the negative IOD, which results in reduced moisture supply from the south. During the latter part of the rainy season in late winter and spring, the interannual variation of precipitation is more strongly influenced by modes of variability over the Mediterranean Sea. The induced large-scale atmospheric circulation anomaly controls moisture supply from the Red Sea and the Persian Gulf.  相似文献   
77.
Variations in the plate convergence direction have generally reflected on the kinematics of the major fault zones developed in the intercontinental parts of the collision zones. The Kuhbanan Fault system is one of the most important intercontinental faults in the Arabia-Eurasia collision zone with a dextral strike slip mechanism. This fault system is composed of three fault strands including Kuhbanan, Bazargan, and Kerman Faults. Here we used calcite e-twin analysis of the vein samples developed in these fault zones to reconstruct deformation condition and the paleodifferential stress direction and magnitude at the Kuhbanan Fault system. Our results represent 190°C-200°C of the deformation temperature and related 5–6 ± 1 km of deformation depth at the Kuhbanan Fault system. Calculated paleodifferential stress magnitude in the Kuhbanan Fault system using e-twin parameters ranges from 169-196 MPa similar to the inner parts of the orogenic systems. Comparing the data set of the Kuhbanan Fault system with previous studies at the Zagros orogen represents an increase of deformation depth and paleodifferential stress magnitudes from the foreland of the Zagros orogen to its hinterland and finally northward around the Kuhbanan Fault system in the central Iranian blocks. We have also proposed a shift of the stress direction from paleo NE to recent N directed by comparing paleostress direction deduced from the calcite e-twin and recent stress direction calculated from GPS and earthquake data analysis around the Kuhbanan Fault system. This kinematics change due to plate reorganization is in agreement with the observed regional variation in convergence direction all in the Arabia-Eurasia collision zone.  相似文献   
78.
The age and composition of the 14 × 106 km2 of Antarctica's surface obscured by ice is unknown except for some dated detrital minerals and erratics. In remedy, we present four new analyses (U–Pb age, TDMC, εHf, and rock type) of detrital zircons from Neogene turbidites as proxies of Antarctic bedrock, and review published proxies: detrital hornblendes analysed for Ar–Ar age and bulk Sm–Nd isotopes; Pb isotope compositions of detrital K-feldspars; erratics and dropstones that reflect age and composition; and recycled microfossils that reflect age and facies. This work deals with the 240°E–0°–015°E sector, and complements Veevers and Saeed's (2011) analysis of the 70°E–240°E sector. Each sample is located in its ice-drainage basin for backtracking to the potential provenance. Gaps in age between sample and upslope exposure are specifically attributable to the provenance. The major provenance of detritus west of the Antarctic Peninsula (AP) is West Antarctica, and of detritus east of the AP East Antarctica. We confirm that the Central Antarctic provenance about a core of the Gamburtsev Subglacial Mountains (GSM) and the Vostok Subglacial Highlands (VSH) contains a basement that includes igneous (mafic granitoids) and metamorphic rocks with peak U–Pb ages of 0.65–0.50, 1.20–0.9, 2.1–1.9, 2.8–2.6, and 3.35–3.30 Ga, TDMC of 3.6–1.3 Ga, and mainly negative εHf. The potential provenance of zircons of 650–500 Ma age with TDMC ages of 1.55 Ga, and of zircons of 1200–900 Ma age with positive εHf lies beneath the ice in East Antarctica south and southeast of Dronning Maud Land within the Antarctic part of the East African–Antarctic Orogen. Zircons with the additional ages of 1.7–1.4 Ga, 2.1–1.9 Ga, and 3.35–3.00 Ga have a potential provenance in the GSM.  相似文献   
79.
In the current study the application of organo‐modified bentonite for the adsorption of mycotoxins (aflatoxin B1, citrinin, patulin, and zearalenone) is presented. The modification of clays is carried out using benzyl‐tri‐n‐butyl ammonium bromide (BTB), benzethonium chloride (BTC), and dioctyl sodium sulfosuccinate (DSS). Various experimental parameters such as pH, time, adsorbent dose, and mycotoxins concentration are thoroughly studied. The modified clays (B‐BTB, B‐BTC and B‐DSS) are characterized by X‐ray fluorescence, X‐ray diffraction, and Fourier transform infrared spectroscopy. The results depicted the high detoxification efficiency (≈99%) of modified clays for the removal of mycotoxins under optimized conditions (pH 5, time: 30 min, adsorbent amount: 50 mg). The adsorption capacities of modified clays are found in the order of: B‐BTC (AFB1: 18.02, CIT: 18.35, PAT: 18.21, ZEA: 18.09 mg g?1) > B‐BTB (AFB1: 17.7, CIT: 18.11, PAT: 17.95, ZEA: 17.90 mg g?1) > B‐DSS (AFB1: 17.5, CIT: 18.02, PAT: 17.86, ZEA: 17.80 mg g?1). The obtained results fitted well with thermodynamic, isothermal (Langmuir) and pseudo‐second order kinetics. Low cost organo‐modified bentonite shows the promise in mitigating mycotoxin contamination, which could improve food safety and reduce environmental contamination.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号