首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   0篇
  国内免费   9篇
测绘学   1篇
大气科学   14篇
地球物理   6篇
地质学   51篇
海洋学   3篇
天文学   18篇
自然地理   5篇
  2019年   1篇
  2014年   2篇
  2013年   7篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   6篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   4篇
  2000年   5篇
  1999年   6篇
  1998年   3篇
  1997年   8篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
  1970年   1篇
  1964年   1篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
11.
Stanford, S. D. 2009: Onshore record of Hudson River drainage to the continental shelf from the late Miocene through the late Wisconsinan deglaciation, USA: synthesis and revision. Boreas, 10.1111/j.1502‐3885.2009.00106.x. ISSN 0300‐9483. Fluvial and glacial deposits in New Jersey, Long Island, and the Hudson valley provide a record of Hudson River drainage since the late Miocene. Late Miocene fluvial deposits record southerly flow across the emerged inner New Jersey shelf. In the late Miocene–early Pliocene this drainage incised, shifted southwesterly, and discharged to the shelf south of New Jersey. During late Pliocene or Early Pleistocene glaciation, discharge to the shelf in the New York City area was established. This drainage incised and stabilized in the Early and Middle Pleistocene and remained open during pre‐Wisconsinan (Oxygen Isotope Stage 6? (OIS‐6?)) and late Wisconsinan (OIS‐2) glacial advances. During late Wisconsinan retreat, moraine deposits dammed the valley at the Narrows to form Lake Albany. From 19 to 15.5 kyr BP (all dates in 14C yr), Hudson drainage was directed eastward into the Long Island Sound lowland. Drainage of Lake Wallkill into Lake Albany at 15.5 kyr BP breached the Narrows dam and initiated the unstable phase of Lake Albany, which was controlled by eroding spillways, first on the moraine dam, then on emerged lake‐bottom in the mid‐Hudson valley. Marine incursion between 12 and 11 kyr BP limited fluvial incision of the lake bottom, stabilizing the Quaker Springs, Coveville, and upper Fort Ann spillways. Lowering sea level between 11 and 10 kyr BP allowed incision from the upper to lower Fort Ann threshold. Sediment eroded by lake outflows between 15 and 10.5 kyr BP was trapped in the glacially deepened lower valley. Little inland sediment reached the shelf after 20 kyr BP.  相似文献   
12.
Abstract— The main asteroid belt has lost >99.9% of its solid mass since the time at which the planets were forming, according to models for the protoplanetary nebula. Here we show that the primordial asteroid belt could have been cleared efficiently if much of the original mass accreted to form planetsized bodies, which were capable of perturbing one another into unstable orbits. We provide results from 25 N‐body integrations of up to 200 planets in the asteroid belt, with individual masses in the range 0.017–0.33 Earth masses. In the simulations, these bodies undergo repeated close encounters which scatter one another into unstable resonances with the giant planets, leading to collision with the Sun or ejection from the solar system. In response, the giant planets' orbits migrate radially and become more circular. This reduces the size of the main‐belt resonances and the clearing rate, although clearing continues. If ~3 Earth masses of material was removed from the belt this way, Jupiter and Saturn would initially have had orbital eccentricities almost twice their current values. Such orbits would have made Jupiter and Saturn 10–100x more effective at clearing material from the belt than they are on their current orbits. The time required to remove 90% of the initial mass from the belt depends sensitively on the giant planets' orbits, and weakly on the masses of the asteroidal planets. 18 of the 25 simulations end with no planets left in the belt, and the clearing takes up to several hundred million years. Typically, the last one or two asteroidal planets are removed by interactions with planets in the terrestrial region  相似文献   
13.
14.
Glacial drifts perched alongside outlet glaciers that drain through the Transantarctic Mountains constrain inland polar plateau ice elevations. The Taylor Glacier, which heads in the Taylor Dome (a peripheral dome of the East Antarctic Ice Sheet), drains East Antarctic ice into the Dry Valleys sector of Transantarctic Mountains and terminates in central Taylor Valley, about 24 km west of the Ross Sea. Five gravel-rich drifts (including 39 distinct moraine ridges) fringe a lateral lobe of the Taylor Glacier in the lower Arena Valley, Quartermain Mountains, southern Victoria Land. 3He and 10Be exposure age dating (from Brook et al . 1992), together with Arena Valley stratigraphy and soil morphologic data, provide chronologic control for these drifts and constrain maximum Quaternary thickening of the inland Taylor ice dome to less than 160 m. These minor Quaternary expansions of Taylor Glacier were out-of-phase with outlet glaciers that pass through the Transantarctic Mountains and terminate in the Ross Sea north and south of the Dry Valleys region. Textural analyses suggest that drift deposition occurred from cold-based ice, even though Taylor Glacier advances most likely occurred during global interglaciations. The thermal regime of former Taylor Glacier ice lobes, the character of geomorphic features superimposed on individual drifts, the chemical composition of soils developed on Taylor drifts, and the stability of in situ moraine ridges on steep valley walls suggest that the present cold-desert climate in Arena Valley has persisted for at least the last 2.2 Ma.  相似文献   
15.
Gould Pond sediments are unusual in North America in that they include a continuous record of change from marine to freshwater conditions during the late-glacial period, with a wide array of micro- and macrofossils deposited during a period of high sedimentation rate. Marine waters, much colder than those in the present Gulf of Maine, covered the site at the time of deglaciation (c. 13,200 BP). Plants characteristic of modem tundra grew on nearby uplands. Marine recession, due to isostatic rebound of the land, occurred from c . 12,800–12,200 BP. The lake water was completely freshened by 12,000 BP. A sparse shrub-herb tundra became established around Gould Pond as marine waters receded. Subsequent to 11,300 BP, sedges and other herbs became more abundant, and willow and Dryas less abundant, signifying increased warmth and decreased frost action. At least six tree species, all now common in the area, arrived around Gould Pond between c . 10,800 and 10,500 BP. This rapid transition was coincident with the most rapid major non-anthropogenic change of vegetation at sites across eastern North America during the postglacial period.  相似文献   
16.
17.
The record of Quaternary glaciations of coastal areas is frequently preserved as a raised deglacial-emergence sequence. Detailed radiocarbon dating of foraminifera and marine macrofossils from a representative deglacial sequence on west Spitsbergen document two periods of sedimentation at c . 11,400 BP and at 9500 BP that together span < 500 years. The incompleteness of this record (< 25%), the highly episodic nature of sedimentation, the dominance of local glacial and environmental effects and the presence of allochthonous foraminifera inhibits ascertaining the relation between deglaciation of Svalbard/Barents Sea and changes in thermohaline circulation in the Norwegian Sea. The Late Weichselian and older deglacial sequences on west Spitsbergen have a similar sedimentologic succession. Thus, one possibility is that older raised-marine deglacial sequences on Svalbard and other Arctic areas may represent similar brief intervals, potentially confounding correlations across the Arctic and with well established events (i.e. the Eemian Interglacial) at lower latitudes.  相似文献   
18.
Abstract— We have measured the size of the high‐Ni particles in the cloudy zone and the width of the outer taenite rim in eight low shocked and eight moderately to heavily shocked IVA irons using a transmission electron microscope (TEM). Thin sections for TEM analysis were produced by a focused ion beam instrument. Use of the TEM allowed us to avoid potential artifacts which may be introduced during specimen preparation for SEM analysis of high Ni particles <30 nm in size and to identify microchemical and microstructural changes due to the effects of shock induced reheating. No cloudy zone was observed in five of the eight moderately to highly shocked (>13 GPa) IVA irons that were examined in the TEM. Shock induced reheating has allowed for diffusion from 20 nm to 400 nm across kamacite/taenite boundaries, recrystallization of kamacite, and the formation, in Jamestown, of taenite grain boundaries. In the eleven IVA irons with cloudy zone microstructures, the size of the high‐Ni particles in the cloudy zone increases directly with increasing bulk Ni content. Our data and the inverse correlation between cooling rate and high‐Ni particle size for irons and stony‐irons show that IVA cooling rates at 350‐200 °C are inversely correlated with bulk Ni concentration and vary by a factor of about 15. This cooling rate variation is incompatible with cooling in a metallic core that was insulated with a silicate mantle, but is compatible with cooling in a metallic body of radius 150 ± 50 km. The widths of the tetrataenite regions next to the cloudy zone correlate directly with high‐Ni particle size providing another method to measure low temperature cooling rates.  相似文献   
19.
The Marguerite Amphibolite and associated rocks in northern Fiordland, New Zealand, contain evidence for retention of Carboniferous metamorphic assemblages through Cretaceous collision of an arc, emplacement of large volumes of mafic magma, high‐P metamorphism and then extensional exhumation. The amphibolite occurs as five dismembered aluminous meta‐gabbroic xenoliths up to 2 km wide that are enclosed within meta‐leucotonalite of the Lake Hankinson Complex. A first metamorphic event (M1) is manifest in the amphibolite as a pervasively lineated pargasite–anorthite–kyanite or corundum ± rutile assemblage, and as diffusion‐zoned garnet in pelitic schist xenoliths within the amphibolite. Thin zones of metasomatically Al‐enriched leucotonalite directly at the margins of each amphibolite xenolith indicate element redistribution during M1 and equilibration at 6.6 ± 0.8 kbar and 618 ± 25 °C. A second phase of recrystallization (M2) formed patchy and static margarite ± kyanite–staurolite–chlorite–plagioclase–epidote assemblages in the amphibolite, pseudomorphs of coronas in gabbronorite, and thin high‐grossular garnet rims in the pelitic schists. Conditions of M2, 8.8 ± 0.6 kbar and 643 ± 27 °C, are recorded from the rims of garnet in the pelitic schists. Cathodoluminescence imaging and simultaneous acquisition of U‐Th‐Pb isotopes and trace elements by depth‐profiling zircon grains from one pelitic schist reveals four stages of growth, two of which are metamorphic. The first metamorphic stage, dated as 340.2 ± 2.2 Ma, is correlated with M1 on the basis that the unusual zircon trace element compositions indicate growth from a metasomatic fluid derived from the surrounding amphibolite during penetrative deformation. A second phase of zircon overgrowth coupled with crosscutting relationships date M2 to between 119 and 117 Ma. The Early Carboniferous event has not previously been recognized in northern Fiordland, whereas the latter event, which has been identified in Early Cretaceous batholiths, their xenoliths, and rocks directly at batholith margins, is here shown to have also affected the country rock. However, the effects of M2 are fragmentary due to limited element mobility, lack of deformation, distance from a heat source and short residence time in the lower crust during peak P and T. It is possible that many parts of the Fiordland continental arc achieved high‐P conditions in the Early Cretaceous but retain earlier metamorphic or igneous assemblages.  相似文献   
20.
Abstract– We investigate the hypothesis that many chondrules are frozen droplets of spray from impact plumes launched when thin‐shelled, largely molten planetesimals collided at low speed during accretion. This scenario, here dubbed “splashing,” stems from evidence that such planetesimals, intensely heated by 26Al, were abundant in the protoplanetary disk when chondrules were being formed approximately 2 Myr after calcium‐aluminum‐rich inclusions (CAIs), and that chondrites, far from sampling the earliest planetesimals, are made from material that accreted later, when 26Al could no longer induce melting. We show how “splashing” is reconcilable with many features of chondrules, including their ages, chemistry, peak temperatures, abundances, sizes, cooling rates, indented shapes, “relict” grains, igneous rims, and metal blebs, and is also reconcilable with features that challenge the conventional view that chondrules are flash‐melted dust‐clumps, particularly the high concentrations of Na and FeO in chondrules, but also including chondrule diversity, large phenocrysts, macrochondrules, scarcity of dust‐clumps, and heating. We speculate that type I (FeO‐poor) chondrules come from planetesimals that accreted early in the reduced, partially condensed, hot inner nebula, and that type II (FeO‐rich) chondrules come from planetesimals that accreted in a later, or more distal, cool nebular setting where incorporation of water‐ice with high Δ17O aided oxidation during heating. We propose that multiple collisions and repeated re‐accretion of chondrules and other debris within restricted annular zones gave each chondrite group its distinctive properties, and led to so‐called “complementarity” and metal depletion in chondrites. We suggest that differentiated meteorites are numerically rare compared with chondrites because their initially plentiful molten parent bodies were mostly destroyed during chondrule formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号