首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
大气科学   34篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1996年   2篇
  1994年   1篇
  1991年   1篇
  1987年   2篇
排序方式: 共有34条查询结果,搜索用时 0 毫秒
31.
The ability to simulate atmospheric dispersion with models developed for applied use under stable atmospheric stability conditions is discussed. The paper is based on model simulations of three experimental data sets reported in the literature. The Hanford data set covered weakly stable conditions, the Prairie Grass experiments covered both weakly stable and very stable atmospheric conditions, and the Lillestrøm experiment was carried out during very stable conditions. Simulations of these experiments reported in the literature for eight different models are discussed. Applied models based on the Gaussian plume model concept with the spread parameters described in terms of the Pasquill stability classification or Monin–Obukhov similarity relationships are used. Other model types are Lagrangian particle models which also are parameterized in terms of Monin–Obukhov similarity relationships. The applied models describe adequately the dispersion process in a weakly stable atmosphere, but fail during very stable atmospheric conditions. This suggests that Monin–Obukhov similarity theory is an adequate tool for the parameterization of the input parameters to atmospheric dispersion models during weakly stable conditions, but that more detailed parameterisations including other physical processes than those covered by the Monin–Obukhov theory should be developed for the very stable atmosphere.  相似文献   
32.
Summary The Basel UrBan Boundary Layer Experiment (BUBBLE) was a year-long experimental effort to investigate in detail the boundary layer structure in the City of Basel, Switzerland. At several sites over different surface types (urban, sub-urban and rural reference) towers up to at least twice the main obstacle height provided turbulence observations at many levels. In addition, a Wind Profiler and a Lidar near the city center were profiling the entire lower troposphere. During an intensive observation period (IOP) of one month duration, several sub-studies on street canyon energetics and satellite ground truth, as well as on urban turbulence and profiling (sodar, RASS, tethered balloon) were performed. Also tracer experiments with near-roof-level release and sampling were performed. In parallel to the experimental activities within BUBBLE, a meso-scale numerical atmospheric model, which contains a surface exchange parameterization, especially designed for urban areas was evaluated and further developed. Finally, the area of the full-scale tracer experiment which also contains several sites of other special projects during the IOP (street canyon energetics, satellite ground truth) is modeled using a very detailed physical scale-model in a wind tunnel. In the present paper details of all these activities are presented together with first results.  相似文献   
33.
34.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号