首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   5篇
  国内免费   3篇
大气科学   2篇
地球物理   17篇
地质学   17篇
海洋学   8篇
天文学   21篇
自然地理   1篇
  2024年   1篇
  2021年   3篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   5篇
  2013年   1篇
  2012年   1篇
  2011年   8篇
  2010年   6篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   5篇
  2005年   2篇
  2004年   7篇
  2003年   2篇
  2002年   1篇
  2001年   6篇
  1982年   1篇
  1980年   1篇
  1970年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
61.
Abstract— We measured 852 sets of planar deformation features (PDFs) in shocked quartz grains in impactite samples of the Yaxcopoil (YAX‐1) core and from 4 Cretaceous/Tertiary (K/T) boundary deposits: the Monaca, the Cacarajícara, and the Peñalver formations in Cuba, and DSDP site 536, within 800 km of the Chicxulub crater, in order to investigate variations of PDF orientations in the proximity of the crater. Orientations of PDFs show a broad distribution with peaks at ω {101¯3}, π {101¯2}, and ω {111¯2}, plus r, z {1011¯} orientations with minor c(0001), s{112¯1}, t{224¯1} plus x{516¯1}, and m{101¯0} plus a{112¯0} orientations. Planar deformation features with c(0001) orientation are relatively more abundant in the proximity of the Chicxulub crater than in distal sites such as North America, the Pacific Ocean, and Europe. This feature indicates that in the proximity of the crater, part of the shocked quartz grains in the K/T boundary deposits were derived from the low shock pressure zones. Moreover, the orientations of PDFs with ω {112¯2} plus r, z {101¯1} are high in our studied sites, and frequencies of these orientations decrease with increasing distance from the crater. On the other hand, absence of c(0001) and the rare occurrence of PDFs with ?ω {112¯2} plus r, z {101¯1} orientations in the sample from the YAX‐1 core that was taken at the top of the impactite layer of the Chicxulub crater suggests that the sampling horizon that reflects a certain cratering stage is also an important factor for variations in shocked quartz.  相似文献   
62.
In order to investigate biota and sedimentary facies, and to delineate processes of carbonate sedimentation in seagrass beds, we conducted sedimentological investigations along three onshore–offshore transects at two sites (Nagura and Yoshihara) on Ishigaki‐jima, Ryukyu Islands. Along the transects, the seagrass beds extended seaward 20–40 m from shore, and their widths parallel to the shore ranged from 60 to >110 m. The seagrass was dominated by Thalassia hemprichii, Cymodocea rotundata and subordinate C. serrulata. Seasonal changes in seagrass coverage were evident, with mean coverage relatively higher in summer and fall (July and October) than in winter and spring (January and April). The surface sediment throughout the seagrass beds was dominated by medium to very coarse sand‐sized bioclasts displaying grainstone/packstone fabrics. Bioclasts were dominated by corals and coralline algae, with lesser benthic foraminifers, mollusks, echinoids, and Halimeda. The grainstone/packstone was underlain by gravelly sediment with coral clasts, showing a rudstone fabric, at the Nagura Site. The lower part of the core sediment was blackened, indicating a reducing environment. Two dates of corals collected at the Nagura and Yoshihara sites (24.5 cm and 16.5 cm below the sea bottom) were 2781–2306 and 4374–3805 cal BP (2σ age range), respectively, suggesting extremely low sedimentation rates (<0.1 mm/year). Sediment influx was higher during July–January than during January–July. The relatively large influx during summer and fall is caused by massive sediment transport during typhoons and storms. The total sediment influx (i.e., suspension‐load sediment transportation) is 74–96 kg CaCO3/m2/year at the Nagura Site and 21–57 kg CaCO3/m2/year at the Yoshihara Site. Sediment influx was significantly greater in the seagrass beds than in surrounding areas, providing supporting evidence for an sediment trapping function of seagrass beds. Our data indicate that seagrass beds in the Ryukyu Islands are characterized by high sediment fluxes and extremely low sedimentation rates.  相似文献   
63.
Fission-track (FT) analysis using apatite and zircon was performed on samples from two fracture zones (FZ) at the depths of 1140 and 1310 m within the 1838 m borehole core penetrating the Ryoke Granitic Rocks in the Nojima Fault at Nojima-Hirabayashi, Awaji Island, Japan, drilled just after the 1995 Hyogo-ken Nanbu earthquake. Clear discordance in apatite and zircon FT age was found for two samples located at  2 m below the central part of each FZs where the presence of pseudotachylyte and/or fault gouge would predict the largest amount of slip. Asymmetric distribution was identified by discordant ages with respect to the central part of FZs. These very local discordant ages in the fault reflect thermal anomalies caused by secondary heating with an inferred maximum temperature in the region between apatite and zircon closure temperatures at a time post-48 Ma. As a source of the secondary heating, heat transfer or dispersion via geothermal fluids caused presumably the observed similarity in asymmetric distribution of discordant FT ages at two different FZs. Other samples yield concordant FT zircon and apatite ages and these indicate rapid cooling within the bounds of two closure temperatures of these minerals at  60 Ma of the Ryoke Granitic Rocks.  相似文献   
64.
On the basis of observations using Cs‐corrected STEM, we identified three types of surface modification probably formed by space weathering on the surfaces of Itokawa particles. They are (1) redeposition rims (2–3 nm), (2) composite rims (30–60 nm), and (3) composite vesicular rims (60–80 nm). These rims are characterized by a combination of three zones. Zone I occupies the outermost part of the surface modification, which contains elements that are not included in the unchanged substrate minerals, suggesting that this zone is composed of sputter deposits and/or impact vapor deposits originating from the surrounding minerals. Redeposition rims are composed only of Zone I and directly attaches to the unchanged minerals (Zone III). Zone I of composite and composite vesicular rims often contains nanophase (Fe,Mg)S. The composite rims and the composite vesicular rims have a two‐layered structure: a combination of Zone I and Zone II, below which Zone III exists. Zone II is the partially amorphized zone. Zone II of ferromagnesian silicates contains abundant nanophase Fe. Radiation‐induced segregation and in situ reduction are the most plausible mechanisms to form nanophase Fe in Zone II. Their lattice fringes indicate that they contain metallic iron, which probably causes the reddening of the reflectance spectra of Itokawa. Zone II of the composite vesicular rims contains vesicles. The vesicles in Zone II were probably formed by segregation of solar wind He implanted in this zone. The textures strongly suggest that solar wind irradiation damage and implantation are the major causes of surface modification and space weathering on Itokawa.  相似文献   
65.
The mineralogy and mineral chemistry of Itokawa dust particles captured during the first and second touchdowns on the MUSES‐C Regio were characterized by synchrotron‐radiation X‐ray diffraction and field‐emission electron microprobe analysis. Olivine and low‐ and high‐Ca pyroxene, plagioclase, and merrillite compositions of the first‐touchdown particles are similar to those of the second‐touchdown particles. The two touchdown sites are separated by approximately 100 meters and therefore the similarity suggests that MUSES‐C Regio is covered with dust particles of uniform mineral chemistry of LL chondrites. Quantitative compositional properties of 48 dust particles, including both first‐ and second‐touchdown samples, indicate that dust particles of MUSES‐C Regio have experienced prolonged thermal metamorphism, but they are not fully equilibrated in terms of chemical composition. This suggests that MUSES‐C particles were heated in a single asteroid at different temperatures. During slow cooling from a peak temperature of approximately 800 °C, chemical compositions of plagioclase and K‐feldspar seem to have been modified: Ab and Or contents changed during cooling, but An did not. This compositional modification is reproduced by a numerical simulation that modeled the cooling process of a 50 km sized Itokawa parent asteroid. After cooling, some particles have been heavily impacted and heated, which resulted in heterogeneous distributions of Na and K within plagioclase crystals. Impact‐induced chemical modification of plagioclase was verified by a comparison to a shock vein in the Kilabo LL6 ordinary chondrite where Na‐K distributions of plagioclase have been disturbed.  相似文献   
66.
Abstract. Pyrophyllite deposits can be divided into five types on the basis of geology and genesis. The first two types are associated with hydrothermally altered rocks in felsic and intermediate volcanogenic suites. They are characterized by their metasomatites and their subsequent mineralogic transformations under varying volcanic conditions. The third type includes deposits and occurrences of metamorphic-metasomatic genesis, which is caused by transformations of terrigenous-sedimentary interbeds in felsic volcanics under greenschist facies conditions. The fourth type is associated with low and mid-temperature stages of hydrothermal vein formation at the limits of volcanogenic and metamorphic strata. The fifth type comprises pyrophyllite occurrences in weathering crusts on metamorphic strata and metasomatite.
The formation conditions and distribution of raw pyrophyllite deposits were influenced by the geodynamic situations and geochemical conditions, such as character of tectonic dislocations, volcanism and chemical composition of hydrothermal solutions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号