首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   5篇
  国内免费   3篇
大气科学   2篇
地球物理   17篇
地质学   17篇
海洋学   8篇
天文学   21篇
自然地理   1篇
  2024年   1篇
  2021年   3篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   5篇
  2013年   1篇
  2012年   1篇
  2011年   8篇
  2010年   6篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   5篇
  2005年   2篇
  2004年   7篇
  2003年   2篇
  2002年   1篇
  2001年   6篇
  1982年   1篇
  1980年   1篇
  1970年   1篇
排序方式: 共有66条查询结果,搜索用时 93 毫秒
51.
We investigated the spatial distribution of glycerol dialkyl glycerol tetraethers (GDGTs), alkenones, and polyunsaturated fatty acids in particulate organic matter collected at four sites along a depth transect from the continental shelf to the Okinawa Trough in the East China Sea during the spring bloom in 2008. The maximum alkenone concentration appeared in the top 25?m at all sites and the $ U_{37}^{{{\text{K}}'}} $ values were consistent with in situ water temperatures in the depth interval, suggesting that the alkenones were produced mainly in surface water. At the slope and shelf sites, GDGTs in the water column showed a concentration maximum at 74?C99?m depth, and the $ {\text{TEX}}_{86}^{\text{H}} $ agreed with in situ water temperatures, suggesting the in situ production of GDGTs in the depth interval. The low-salinity surface water above 20?m depth was characterized by low GDGT concentrations and low $ {\text{TEX}}_{86}^{\text{L}} $ -based temperatures, suggesting either the production of GDGTs in winter season or the lateral advection of GDGTs by an eastward current. At the slope and Okinawa Trough sites, TEX86-based temperatures were nearly constant in the water column deeper than 300?m and corresponded to temperatures at the surface and near-surface waters rather than in situ temperatures. This observation is consistent with a hypothesis that Thaumarchaeota cells produced in surface waters are delivered to deeper water and also indicates that the residence time of suspended GDGTs in the deep-water column is large enough to mix the GDGTs produced in different seasons.  相似文献   
52.
Seasonal changes in the shape and size composition of fecal pellets were investigated with sediment trap samples from 50 and 150 m in Kagoshima Bay to evaluate how the mesozooplankton community affects fecal pellet flux. Deep vertical mixing was evident in March, and thermal stratification was developed above 50 m in June, August and November. Chlorophyll a, suspended particulate organic carbon (POC) and copepod abundance were uniform throughout the water column during the seasonal mixing and concentrated above 50 m in the stratified seasons. Calanoids were the most predominant copepods in March and poecilostomatoids composed more than 45% of the copepod community in June, August and November. Fecal pellet fluxes at 50 and 150 m were the highest in March, nearly half of POC flux. The relative contribution declined considerably in the other months, especially for less than 4% of POC flux in August. The decline was corresponded to the predominance of cyclopoids and poecilostomatoids. Cylindrical pellets dominated the fecal matters at both depths throughout the study period, while larger cylindrical pellets nearly disappeared at 150 m in June, August and November. Copepod incubation revealed that cylindrical and oval pellets were egested by calanoids and the other copepods, respectively. We suggest that cylindrical fecal pellets produced by calanoid copepods contribute to feces flux but the predominance of poecilostomatoids and/or cyclopoids decreases feces flux via the increase of oval pellets and fragmentation of larger cylindrical pellets.  相似文献   
53.
Abstract— The possibility of ocean water invasion into the Chicxulub crater following the impact at the Cretaceous/Tertiary boundary was investigated based on examination of an impactite between approximately 794.63 and 894.94 m in the Yaxcopoil‐1 (Yax‐1) core. The presence of cross lamination in the uppermost part of the impactite suggests the influence of an ocean current at least during the sedimentation of this interval. Abundant occurrence of nannofossils of late Campanian to early Maastrichtian age in the matrices of samples from the upper part of the impactite suggests that the carbonate sediments deposited on the inner rim margin and outside the crater were eroded and transported into the crater most likely by ocean water that invaded the crater after its formation. The maximum grain size of limestone lithics and vesicular melt fragments, and grain and bulk chemical compositions show a cyclic variation in the upper part of the impactite. The upward fining grain size and the absence of erosional contact at the base of each cycle suggest that the sediments were derived from resuspension of units elsewhere in the crater, most likely by high energy currents association with ocean water invasion.  相似文献   
54.
Though the Moon is considered to have been formed by the so-called giant impact, the mass of the Earth immediately after the impact is still controversial. If the Moon was formed during the Earth's accretion, a subsequent accretion of residual heliocentric planetesimals onto the protoearth and the protomoon must have occurred. In this co-accretion stage, a significant amount of lunar-impact-ejecta would be ejected to circumterrestrial orbits, since the mean impact velocity of the planetesimals with the protomoon is much larger than the escape velocity of the protomoon. Orbital calculations of test particles ejected from the protomoon, whose semimajor axis is smaller than that of the present Moon, reveal that most of the particles escaping from the protomoon also escape from the Hill sphere of the protoearth and reduce the planetocentric angular momentum of the primordial Earth-Moon system. Using the results of the ejecta simulations, we investigate the evolution of the mass ratio and the total angular momentum (Earth's spin angular momentum + Moon's orbital angular momentum) of the Earth-Moon system during the co-accretion. We find that the mass of the protomoon is almost constant or rather decreases and the total angular momentum decreases significantly, if the random velocity of planetesimals is as large as the escape velocity of the protoearth. On the other hand, if the random velocity is the half of the escape velocity of the protoearth, the mass ratio is kept to be almost as large as the present value and the decrease of the total angular momentum is not so significant. Comparing with the results of giant impact simulations, we find that the mass of the protoearth immediately after the Moon-forming impact was 0.7-0.8 times the present value if the impactor-to-target mass ratio was 3:7, whereas the giant impact occurred almost in the end of the Earth's accretion if the impactor-to-target mass ratio was 1:9.  相似文献   
55.
Ryuji Morishima  Heikki Salo 《Icarus》2009,201(2):634-654
We present our new model for the thermal infrared emission of Saturn's rings based on a multilayer approximation. In our model, (1) the equation of classical radiative transfer is solved directly for both visible and infrared light, (2) the vertical heterogeneity of spin frequencies of ring particles is taken into account, and (3) the heat transport due to particles motion in the vertical and azimuthal directions is taken into account. We adopt a bimodal size distribution, in which rapidly spinning small particles (whose spin periods are shorter than the thermal relaxation time) with large orbital inclinations have spherically symmetric temperatures, whereas non-spinning large particles (conventionally called slow rotators) with small orbital inclinations are heated up only on their illuminated sides. The most important physical parameters, which control ring temperatures, are the albedo in visible light, the fraction of fast rotators (ffast) in the optical depth, and the thermal inertia. In the present paper, we apply the model to Earth-based observations. Our model can well reproduce the observed temperature for all the main rings (A, B, and C rings), although we cannot determine exact values of the physical parameters due to degeneracy among them. Nevertheless, the range of the estimated albedo is limited to 0-0.52±0.05, 0.55±0.07-0.74±0.03, and 0.51±0.07-0.74±0.06 for the C, B, and A rings, respectively. These lower and upper limits are obtained assuming all ring particles to be either fast and slow rotators, respectively. For the C ring, at least some fraction of slow rotators is necessary (ffast?0.9) in order for the fitted albedo to be positive. For the A and B rings, non-zero fraction of fast rotators (ffast?0.1-0.2) is favorable, since the increase of the brightness temperature with increasing solar elevation angle is enhanced with some fraction of fast rotators.  相似文献   
56.
Abstract The 1995 Hyogo-ken Nanbu (Kobe) earthquake, M 7.2, occurred along the north-east–south-west trending Rokko–Awaji Fault system. Three boreholes of 1001 m, 1313 m and 1838 m deep were drilled in the vicinity of the epicenter of the earthquake. Each borehole is located at characteristic sites in relation to active faults and the aftershock distribution. In particular, the Nojima–Hirabayashi borehole [Hirabayashi National Research Institute for Earth Science and Disaster Prevention (NIED) drilling] in Awaji Island was drilled to a depth of 1838 m, approximately 320 m southeast from the surface rupture of the Nojima Fault, and it crosses fracture zones below a depth of 1140 m. In situ stress measurements by the hydraulic fracturing method were conducted in these boreholes within 1.5 years after the earthquake. Measurement results suggest the following: (i) Differential stress values are very small, approximately 10 MPa at a depth of 1000 m at each site; (ii) the orientation of maximum horizontal compression is almost the same in the boreholes, perpendicular to the surface trace of the faults, north-west–south-east; (iii) fault types estimated from the state of stress differ among these sites; and (iv) the differential stress value just beneath the fault fracture zone decreases abruptly to one-half of that above the fault zone in the Hirabayashi NIED drilling. These features support the idea that the shear stress along the Rokko–Awaji Fault system decreased to a low level just after the earthquake.  相似文献   
57.
Laboratory experiments were made to examine some characteristics of a radiation thermometer (PRT 14–313, Barnes Engineering Company). Effect of nonblackness of the water surface and a large temperature difference between the water and the air above it were investigated. Sea surface temperatures were then measured by the radiation thermometer, thermistor thermometers and a mercury thermometer from a marine tower. The result showed that the temperature at the air-sea interface was not always cooler than the subsurface temperature. The standard deviation of difference of temperatures measured by the radiation thermometer and the thermistor thermometer was 0.44°C. The dependence of the temperature difference on various factors was investigated with the result that current velocity had a good correlation with the temperature difference.  相似文献   
58.
An 1800-m-deep borehole into the Nojima fault zone was drilled at Nojima-Hirabayashi, Japan, after the 1995 Hyogo-ken Nanbu (Kobe) earthquake. Three possible fracture zones were detected at depths of about 1140, 1300, and 1800 m. To assess these fracture zones in this recently active fault, we analyzed the distributions of fault rocks, minerals, and chemical elements in these zones. The central fault plane in the shallowest fracture zone was identified by foliated blue-gray gouge at a depth of 1140 m. The degree of fracturing was evidently greater in the hanging wall than in the footwall. Minerals detected in this zone were quartz, orthoclase, plagioclase, and biotite, as in the parent rock (granodiorite), and also kaolinite, smectite, laumontite, stilbite, calcite, ankerite, and siderite, which are related to hydrothermal alteration. Biotite was absent in both the hanging wall and footwall across the central fault plane, but it was absent over a greater distance from the central fault plane in the hanging wall than in the footwall. Major element compositions across this zone suggested that hydrothermal alteration minerals such as kaolinite and smectite occurred across the central fault plane for a greater distance in the hanging wall than in the footwall. Similarly, H2O+ and CO2 had higher concentrations in the hanging wall than in the footwall. This asymmetrical distribution pattern is probably due to the greater degree of wall–rock fracturing and associated alteration in the hanging wall. We attributed the characteristics of this zone to fault activity and fluid–rock interactions. We analyzed the other fracture zones along this fault in the same way. In the fracture zone at about 1300 m depth, we detected the same kinds of hydrothermal alteration minerals as in the shallower zone, but they were in fewer samples. We detected relatively little H2O+ and CO2, and little evidence for movement of the major chemical elements, indicating little past fluid–rock interaction. In the fracture zone at about 1800 m depth, H2O+ and CO2 were very enriched throughout the interval, as in the fracture zone at about 1140 m depth. However, smectite was absent and chlorite was present, indicating the occurrence of chloritization, which requires a temperature of more than 200 °C. Only smectite can form under the present conditions in these fracture zones. The chloritization probably occurred in the past when the fracture zone was deeper than it is now. These observations suggest that among the three fracture zones, that at about 1140 m depth was the most activated at the time of the 1995 Hyogo-ken Nanbu (Kobe) earthquake.  相似文献   
59.
Abstract High-resolution seismic stratigraphy of the Yamato Basin, Japan Sea, was successfully established using core-log-seismic data integration. The construction of synthetic seismograms by the combination of physical properties and well-log data from the Ocean Drilling Program (ODP) Site 797 was the key to accomplishing the high-resolution seismic stratigraphy. To achieve resolution comparable with well-log data and core lithology, single channel seismic reflection data taken from ODP underway geophysics were reprocessed, and then carefully compared with synthetic seismogram, core and well log profiles to identify seismic units. Ten seismic stratigraphic units were identified at the site, and seismic stratigraphic interpretation was successfully extended from the site to the nearby area along the Yamato Basin margin. The opal-A/opal-CT (biogenic silica/metastable diagenetic silica) boundary has different appearances at places from strong to weak, and mostly discontinuous. One of the significant results achieved from this study is clear distinction of the opal-A/CT boundary from a very strong reflector, which appears at 22 m below the opal-A/CT boundary. Through well-log and physical properties characterization of the different units, resistivity was found to be the best indicator of diatom content and with gamma-ray it also is an indicator of chert layers in the opal-CT zone. Velocity is not greatly effected by diatom ooze in the opal-A zone, however, it shows strong peaks and has an indirect relationship with gamma-ray in the opal-CT zone. Finally, successful correlation of Gamma-ray Attenuation Porosity Evaluator density and resistivity peaks with strong seismic reflectors from upper and lower stratified layers may provide new information on the late Neogene paleoceanography of the Japan Sea in high-resolution scale.  相似文献   
60.
The 1995 Kobe (Hyogo-ken Nanbu) earthquake, M = 7.2, ruptured the Nojima fault in southwest Japan. We have studied core samples taken from two scientific drillholes that crossed the fault zone SW of the epicentral region on Awaji Island. The shallower hole, drilled by the Geological Survey of Japan (GSJ), was started 75 m to the SE of the surface trace of the Nojima fault and crossed the fault at a depth of 624 m. A deeper hole, drilled by the National Research Institute for Earth Science and Disaster Prevention (NIED) was started 302 m to the SE of the fault and crossed fault strands below a depth of 1140 m. We have measured strength and matrix permeability of core samples taken from these two drillholes. We find a strong correlation between permeability and proximity to the fault zone shear axes. The half-width of the high permeability zone (approximately 15 to 25 m) is in good agreement with the fault zone width inferred from trapped seismic wave analysis and other evidence. The fault zone core or shear axis contains clays with permeabilities of approximately 0.1 to 1 microdarcy at 50 MPa effective confining pressure (10 to 30 microdarcy at in situ pressures). Within a few meters of the fault zone core, the rock is highly fractured but has sustained little net shear. Matrix permeability of this zone is approximately 30 to 60 microdarcy at 50 MPa effective confining pressure (300 to 1000 microdarcy at in situ pressures). Outside this damage zone, matrix permeability drops below 0.01 microdarcy. The clay-rich core material has the lowest strength with a coefficient of friction of approximately 0.55. Shear strength increases with distance from the shear axis. These permeability and strength observations reveal a simple fault zone structure with a relatively weak fine-grained core surrounded by a damage zone of fractured rock. In this case, the damage zone will act as a high-permeability conduit for vertical and horizontal flow in the plane of the fault. The fine-grained core region, however, will impede fluid flow across the fault.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号