首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   12篇
  国内免费   9篇
测绘学   6篇
大气科学   5篇
地球物理   51篇
地质学   70篇
海洋学   11篇
天文学   34篇
综合类   3篇
自然地理   9篇
  2024年   1篇
  2021年   9篇
  2020年   7篇
  2019年   3篇
  2018年   14篇
  2017年   6篇
  2016年   6篇
  2015年   3篇
  2014年   7篇
  2013年   8篇
  2012年   5篇
  2011年   14篇
  2010年   6篇
  2009年   12篇
  2008年   15篇
  2007年   7篇
  2006年   11篇
  2005年   9篇
  2004年   7篇
  2003年   2篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1997年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1978年   1篇
  1976年   1篇
排序方式: 共有189条查询结果,搜索用时 12 毫秒
81.
Detrital zircon multi‐chronology combined with provenance and low‐grade metamorphism analyses enables the reinterpretation of the tectonic evolution of the Cretaceous Shimanto accretionary complex in Southwest Japan. Detrital zircon U–Pb ages and provenance analysis defines the depositional age of trench‐fill turbidites associated with igneous activity in provenance. Periods of low igneous activity are recorded by youngest single grain zircon U–Pb ages (YSG) that approximate or are older than the depositional ages obtained from radiolarian fossil‐bearing mudstone. Periods of intensive igneous activity recorded by youngest cluster U–Pb ages (YC1σ) that correspond to the younger limits of radiolarian ages. The YC1σ U–Pb ages obtained from sandstones within mélange units provide more accurate younger depositional ages than radiolarian ages derived from mudstone. Determining true depositional ages requires a combination of fossil data, detrital zircon ages, and provenance information. Fission‐track ages using zircons estimated YC1σ U–Pb ages are useful for assessing depositional and annealing ages for the low‐grade metamorphosed accretionary complex. These new dating presented here indicates the following tectonic history of the accretionary wedge. Evolution of the Shimanto accretionary complex from the Albian to the Turonian was caused by the subduction of the Izanagi plate, a process that supplied sediments via the erosion of Permian and Triassic to Early Jurassic granitic rocks and the eruption of minor amounts of Early Cretaceous intermediate volcanic rocks. The complex subsequently underwent intensive igneous activity from the Coniacian to the early Paleocene as a result of the subduction of a hot and young oceanic slab, such as the Kula–Pacific plate. Finally, the major out‐of‐sequence thrusts of the Fukase Fault and the Aki Tectonic Line formed after the middle Eocene, and this reactivation of the Shimanto accretionary complex as a result of the subduction of the Pacific plate.  相似文献   
82.
Phosphorus and metals bound to organic matter were separated from coastal sediments of Harima Sound in Seto Inland Sea, Japan by extraction with NaOH and fractionated by Sephadex G-25 chromatography. Phosphorus and metals were determined in the eluates by a multi-channel, inductively coupled plasma-atomic emission spectrometer. Phosphorus and Cu, Zn, Fe, Mn, Ni, Cr, Co and Ti bound to organic matter with high molecular weights (OMHMW) (MW ? 5000) were found to be present in the sediments, but no Mo or V were found. The technique provides minimum estimates of the amounts of P and metals bound to organic matter. These organic complexes show surface enrichment in a sediment core (0–20 cm) and their contents decrease with depth. Also, the amounts of eighteen elements, namely: P, Fe, Mn, Zn, Cu, Si, Al, Ti, Pb, Co, Ni, Cr, Mo, V, Na, K, Ca and Mg, in H2O, ammonium acetate at pH 7 and 5, hydrogen peroxide, hydroxylamine hydrochloride and hydrogen fluoric acid soluble fractions have been determined with a selective chemical leaching technique for the 210Pb-dated sediment core sample. Considerable amounts of P (6–19%) and Cu (5–21%) were associated with organic matter, in contrast to other metals such as Fe, Mn, Zn, Ni, Cr, Co and Ti which were associated with sulfide and silicate.  相似文献   
83.
84.
Suspended particles and dissolved substances in water provide reactive surfaces, influence metabolic activity and contribute to the net sediment deposition. It therefore plays an important part in the ecology and quality of the water mass. The water quality in reservoirs is crucial and it is naturally maintained by flushing and sedimentation, which continuously remove phosphorus from the water. In some reservoirs, however, these removal processes are countered by recycling of ions which could play a key role to start and/or maintain the eutrophic state. The combination of macro‐, trace‐ and microanalysis techniques can be useful to trace pollution sources through a chemical fingerprint, whether be during an acute environmental disaster or a long‐term release of pollutants. The water quality and total metal content of reservoir sediments were assessed in a reservoir, situated in the capital of the Paraná State, in the South‐Eastern part of Brazil. The goal of this paper was to determine the metal presence in the sediment and metal and ionic speciation in the Green River reservoir water. Water and bed sediment samples, collected from various sites during 2008 and 2009, were investigated using XRF, ICP‐OES, ICP‐MS, XRD and zeta potential measurements. Based on the results, the heavy metal concentration and chemical composition of the suspended matter in the water samples, as well as the sediment's chemical composition will be discussed.  相似文献   
85.
Molecular weight and trace metal distributions of fulvic and humic acid fractions of marine sediments from the Seto Inland Sea were investigated by using a gel filtration technique in combination with atomic absorption and emission spectrometries. A binary molecular weight distribution was found both in the fulvic acid fraction and in the humic acid fraction. The fulvic acid fractions with molecular weights of less than 1.5×103 and of 5×103?104 accounted for 38–57 % and 25–41 % of the total fulvic acids, respectively, and the humic acid fractions with molecular weights of 102?104 and of over 2×105 accounted for 58–73 % and 16–27 % of the total humic acids, respectively. The components with molecular weights of over 1.5×103 contained 54 %, on average, of the Fe, Zn and Cu in the fulvic acid fraction, and the components with molecular weights of over 104 contained 58 %, on average, of these metals in the humic acid fraction.  相似文献   
86.
The opening of the Japan Sea separated southwest Japan from the Eurasian continent during the Early to Middle Miocene. Since then, diverse igneous activities have occurred in relation to the subduction of the Philippine Sea Plate beneath southwest Japan. The Okinawa Trough formed in the back-arc region of the Ryukyu Arc since the Late Miocene. In the Koshikijima Islands, off the west coast of Kyushu and near the northern end of the Okinawa Trough, felsic to intermediate igneous rocks with Middle to Late Miocene radiometric ages occur as granitic intrusions and dikes. We obtained zircon U–Pb ages and whole-rock major- and trace-element compositions of Koshikijima granitic rocks to elucidate their magmagenesis. The U–Pb ages of granitic rocks in Kamikoshikijima and Shimokoshikijima and a dacite dike are about 10 Ma, suggesting that most magmatism on the Koshikijima Islands was coeval with early rifting in the Okinawa Trough. We infer that magmagenesis occurred via melting of lower crustal mafic rocks related to rifting in the Okinawa Trough based on the arc-like trace-element compositions of these I-type granites. Andesitic dikes preceded felsic igneous activity on the Koshikijima Islands, and their ages and petrochemistry will help elucidate the magmatism and tectonics in this area throughout the Miocene.  相似文献   
87.
Non-metamorphosed, autochthonous Lesser Himalayan sediments (LHS), which are correlated to the Kuncha and Naudanda Formations, were found in a narrow belt between the Main Boundary Thrust and the Lesser Himalayan Thrust at the base of the Kuncha nappe in southeastern Nepal. The autochthonous Naudanda Formation is comprised of cross-bedded and rippled orthoquartzite and yielded a maximum depositional age of 1795.1 Ma ±5.1 Ma using detrital zircons. Low-grade metamorphosed quartzite in the Kuncha nappe yielded a maximum depositional age of 1867.4 Ma ±3.4 Ma, although it is totally recrystallized. These ages and age distribution patterns of detrital zircon grains indicate that the meta-quartzite of the nappe is originally Naudanda Formation. A zircon fission-track age of the autochthonous Naudanda Formation shows partially annealed age of 864 Ma ±56 Ma, in contrast, that of the Kuncha nappe shows a totally annealed age of 11.9 Ma ±1.6 Ma. These results suggest that the autochthonous LHS have never undergone metamorphism during the Himalayan orogeny. We also discovered a non-metamorphosed Heklang Formation that rests on the Naudanda Formation, and designated it as a sub-type section on the basis of detailed lithostratigraphic study. It is characterized by black and light green slate with dolerite sills and ill-sorted quartzose sandstone, and correlated to the metamorphosed Dandagaon Phyllites in the Kathmandu area. Non-metamorphosed autochthonous formations distributed to the south of the nappe front suggest that they escaped from thermal metamorphism by hot nappe.  相似文献   
88.
Landslide susceptibility assessment is a major research topic in geo-disaster management. In recent days, various landslide susceptibility and landslide hazard assessment methodologies have been introduced with diverse thoughts of assessment and validation method. Fundamentally, in landslide susceptibility zonation mapping, the susceptibility predictions are generally made in terms of likelihoods and probabilities. An overview of landslide susceptibility zoning practices in the last few years reveals that susceptibility maps have been prepared to have different accuracies and reliabilities. To address this issue, the work in this paper focuses on extreme event-based landslide susceptibility zonation mapping and its evaluation. An ideal terrain of northern Shikoku, Japan, was selected in this study for modeling and event-based landslide susceptibility mapping. Both bivariate and multivariate approaches were considered for the zonation mapping. Two event-based landslide databases were used for the susceptibility analysis, while a relatively new third event landslide database was used in validation. Different event-based susceptibility zonation maps were merged and rectified to prepare a final susceptibility zonation map, which was found to have an accuracy of more than 77 %. The multivariate approach was ascertained to yield a better prediction rate. From this study, it is understood that rectification of susceptibility zonation map is appropriate and reliable when multiple event-based landslide database is available for the same area. The analytical results lead to a significant understanding of improvement in bivariate and multivariate approaches as well as the success rate and prediction rate of the susceptibility maps.  相似文献   
89.
Based on fault maps, whether or not the fracture geometry of rocks is self-similar, was examined by using a box-counting algorithm. The statistical self-similarity (fractal structure) of the fault fracture systems holds well at the scale of about 2 to 20 km. The fractal dimension in Japan varied from 1.05 to 1.60. The fractal dimension is about 1.5–1.6 at the central part of the Japan Arc, and decreases with distance from the center. At a smaller scale, the fractal structure also holds well in the rock fracture geometry. The fractal dimension of the North Izu Peninsula fault system (branching faults) is 1.49 at the scale of 0.625 to 10 km, the fractal dimension of rock fracture geometry at the scale order of 10–1 to 10–2 meters is about 1.49–1.61. The upper limit of the fractal dimension of rock fracture geometry is about 1.6, judging from the estimation of fractal dimension on actual fracture geometry of rocks. This value may impose a restraint on modeling of faulting and the fracture process of rocks.  相似文献   
90.
Two OBS arrays were deployed in the southern Okinawa Trough.Some of the OBS records revealedmany earthquakes with intensive T waves but ambiguous body waves.A new method using T waves for epicenter locating was developed that was found to be as precise as the body wave method for locatingepicenters when T waves are clearly recorded.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号