首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   890篇
  免费   33篇
  国内免费   6篇
测绘学   5篇
大气科学   86篇
地球物理   164篇
地质学   266篇
海洋学   55篇
天文学   290篇
综合类   3篇
自然地理   60篇
  2021年   5篇
  2020年   7篇
  2019年   11篇
  2018年   27篇
  2017年   17篇
  2016年   13篇
  2015年   28篇
  2014年   22篇
  2013年   51篇
  2012年   23篇
  2011年   48篇
  2010年   42篇
  2009年   57篇
  2008年   27篇
  2007年   36篇
  2006年   33篇
  2005年   33篇
  2004年   27篇
  2003年   30篇
  2002年   40篇
  2001年   20篇
  2000年   34篇
  1999年   9篇
  1998年   15篇
  1997年   16篇
  1996年   16篇
  1995年   19篇
  1994年   9篇
  1993年   8篇
  1992年   11篇
  1991年   8篇
  1990年   11篇
  1989年   10篇
  1988年   3篇
  1987年   7篇
  1986年   9篇
  1985年   12篇
  1984年   16篇
  1983年   15篇
  1982年   7篇
  1981年   12篇
  1980年   7篇
  1979年   9篇
  1978年   12篇
  1977年   12篇
  1976年   8篇
  1975年   6篇
  1974年   8篇
  1973年   3篇
  1971年   3篇
排序方式: 共有929条查询结果,搜索用时 31 毫秒
911.
912.
913.
Submarine gravity currents, especially long run‐out flows that reach the deep ocean, are exceptionally difficult to monitor in action, hence there is a need to reconstruct how these flows behave from their deposits. This study mapped five individual flow deposits (beds) across the Agadir Basin, offshore north‐west Africa. This is the only data set where bed shape, internal distribution of lithofacies, changes in grain size and sea floor gradient, bed volumes, flow thickness and depth of erosion into underlying hemipelagic mud are known for individual beds. Some flows were 30 to 120 m thick. However, flows with the highest fraction of sand were less than 5 to 14 m thick. Sand was most likely to be carried in the lower 5 to 7 m of these flows. Despite being relatively thin, one flow was capable of transporting very large volumes of sediment (ca 200 km3) for large distances across very flat sea floor. These observations show that these relatively thin flows could travel quickly enough on very low gradients (0·02° to 0·05°) to suspend sand several metres to tens of metres above the sea floor, and maintain those speeds for up to 250 km across the basin. Near uniform hemipelagic mud interval thickness between beds, and coccolith assemblages in the mud caps of beds, suggest that the flows did not erode significantly into the underlying sea floor mud. Simple calculations imply that some flows, especially in the proximal part of the basin, were powerful enough to have eroded hemipelagic mud if it was exposed to the flow. This suggests that the flows were depositional from the moment they arrived at a basin plain location, and that deposition shielded the underlying hemipelagic mud from erosion. Reproducing the field observations outlined in this exceptionally detailed field data set is a challenge for future experimental and numerical models.  相似文献   
914.
Analyses were performed on nine different preserved shales, representing in situ states of 5–15 % water content and 0.13–0.42 void ratio. Under varying total suction (controlled humidity), each shale shows well-defined relationships among suction, volume change, water content and saturation, with the lower-porosity shales undergoing less volume and water content change than the higher-porosity shales. A decrease in in situ porosity is also associated with a much higher native state suction as well as full saturation extending to suction values beyond 40 MPa. Only part of the high suction is due to capillary tension. Under direct brine exposure, the shales almost always swell, even when the brine has an equivalent suction greater than the shale. This is likely due to the reduction in some component of the matric suction. The shale pore water is found to equilibrate with the solute content of the surrounding brine, due to ion diffusion. Much or all of the swelling, and water increase, appears to take place in the clay-bound water and not in the main (free water) pore space. The swelling magnitude is consistent with the amount of water content increase. Swelling usually corresponds to less than one additional water layer being added between the clays. Swelling, and water increase, is very small for the low-porosity shales. Some osmotic effects are observable in all the shales, and cation exchange on the clays also takes place. Swelling is best inhibited with potassium, followed by sodium, followed by calcium, for brines of equal water activity ranging from 0.8 to 0.9.  相似文献   
915.
Ballast water is a major pathway for the transfer of non-indigenous species in aquatic environments. The objectives of this study were to determine the ability of ozone to reduce the numbers of a spectrum of marine organisms collected from Puget Sound, Washington in replicated mesocosm (280 l) experiments, and estimate the minimum ozone concentrations as measured by total residual oxidant (TRO) required to reduce organism densities. Ozone treatment was effective in removing bacteria, phytoplankton, and mesozooplankton with initial TRO concentrations of 2–5 mg l−1 as Br2. Persistence of TRO resulted in an extended period of toxicity and cumulative mortality. TRO decay allowed bacteria populations to multiply when TRO levels fell below 0.5–1.0 mg l−1 as Br2. Phytoplankton chlorophyll a concentrations were rapidly reduced by ozone treatment and did not increase in any treatments or controls because of lack of light. Overall mesozooplankton viability was rapidly reduced by 90–99% in treatment TRO levels above 1.85 mg l−1 as Br2. Our study outlines novel protocols that can be used for testing different potential ballast water treatment systems in replicated and controlled mesocosm experiments.  相似文献   
916.
Ballast water is a likely cause for worldwide transfer of non-indigenous aquatic species because of the large volumes and frequency of possible inoculations. Ozone is one treatment option being considered for eliminating non-indigenous species in ballast water. When ozone is applied to seawater, secondary disinfectants are formed, commonly measured and expressed as total residual oxidant (TRO). The goal of this study was to determine those variables most likely to affect the rate of TRO increase during ozonation and the subsequent TRO decline that occurs over time. These parameters strongly influence the efficacy of ozone treatments aimed to eliminate organisms present in ballast water. Seawater was obtained from Puget Sound, Washington; Cape Fear, North Carolina; and San Francisco Bay. Results indicated that seawater characteristics, including the organic content and ammonia, affect the amount of ozone required to achieve a desired TRO level and rate of TRO decay, and therefore need to be considered in determining ozone requirements for ballast water treatment.  相似文献   
917.
This report presents a model predicting activities for NiO in a wide range of silicate melts that include the components SiO2, TiO2, Al2O3, MgO, FeO, CaO, Na2O, and K2O. The conceptual simplicity of this model, combined with its success in modeling complex variations in activity with melt composition, suggests that the approach may provide insight into the character of trace components in the melt. The model presented in this report considers NiO to exist as Ni2+ and O2? in the melt, and predicts the activity of NiO by modeling variations in both aNi2+ and aO2?. Activities of Ni2+ are modeled assuming that NiO mixes randomly with a hypothetical ‘mixing pool’ of cations dominated by cations of similar size and charge to Ni2+, mainly Fe2+, Mg2+, Ca2+, and Ni2+. aO2? is modeled as a function of total oxygen ? 2·network-forming cations, with the understanding that O2? in silicate melts exists in equilibrium with bridging and non-bridging oxygens through reactions of the type Si–O–Si + O2? → 2 Si–O. For illustration, the model is applied to reduced mafic lunar samples that may have equilibrated with a Ni-bearing metal phase.  相似文献   
918.
The NASA/GISS GCM is used to estimate the evaporative contributions of several oceanic regions (defined by temperature) to Antarctica's July precipitation. Tracer diagnostics in the GCM suggest that the weighted average evaporative source temperature for Antarctic precipitation as a whole is about 12°C. The average source temperature for local precipitation there varies from 9° C to 14° C. To examine the effect of evaporative source on water isotope concentration, the GCM also follows a global deuterium (HDO) tracer and deuterium tracers evaporating from each oceanic region. The results suggest that although evaporative source temperature does affect the concentrations of the individual HDO tracers, differences in evaporative source do not explain the scatter in the roughly linear relationship between condensation temperature and isotope concentration. Offprint requests to: R Koster  相似文献   
919.
Mean annual estimates of the oceanic poleward energy transport are obtained using a global atmospheric general circulation model. The computations are carried out by using the atmospheric model to determine the net annual heat flux into the ocean on an 8° × 10° grid. Assuming no net annual heat storage, the annual surface heat fluxes into any zonal band must be accompanied by a corresponding meridional heat transport in the ocean. Heat is transported northward at all latitudes in the Atlantic Ocean and is transported poleward in both hemispheres in the Pacific Ocean. To account for the net northward transport throughout the Atlantic, heat is transported into the Atlantic from the Indian and Pacific basins. The results are compared with several recent direct and indirect calculations of oceanic meridional heat transports.  相似文献   
920.
We examine trends in climate variables and their interrelationships over the Tibetan Plateau using global climate model simulations to elucidate the mechanisms for the pattern of warming observed over the plateau during the latter half of the twentieth century and to investigate the warming trend during the twenty-first century under the SRES A1B scenario. Our analysis suggests a 4°C warming over the plateau between 1950 and 2100. The largest warming rates occur during winter and spring. For the 1961–2000 period, the simulated warming is similar to the observed trend over the plateau. Moreover, the largest warming occurs at the highest elevation sites between 1950 and 2100. We find that increases in (1) downward longwave radiation (DLR) influenced by increases in surface specific humidity (q), and (2) absorbed solar radiation (ASR) influenced by decreases in snow cover extent are, in part, the reason for a large warming trend over the plateau, particularly during winter and spring. Furthermore, elevation-based increases in DLR (influenced by q) and ASR (influenced by snow cover and atmospheric aerosols) appear to affect the elevation dependent warming trend simulated in the model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号