首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   0篇
大气科学   32篇
地球物理   16篇
地质学   34篇
海洋学   12篇
天文学   29篇
自然地理   9篇
  2022年   1篇
  2020年   1篇
  2017年   1篇
  2015年   1篇
  2013年   3篇
  2012年   2篇
  2011年   7篇
  2010年   5篇
  2009年   7篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
  2005年   12篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   6篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1977年   5篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   3篇
  1972年   2篇
  1970年   1篇
排序方式: 共有132条查询结果,搜索用时 46 毫秒
51.
52.
High concentrations of naturally occurring radium pose environmental and health concerns in natural and industrial systems. The adsorption of Ra2+ in saline water is limited compared to its adsorption in fresh water, but the process of co-precipitation may be effective in decreasing its concentration. However, despite its importance, Ra co-precipitation has rarely been studied in high ionic strength environments such as those in evaporitic systems.The fate of Ra in the reject brine of a desalination plant was studied via evaporation batch experiments at ionic strengths (I) ranging from 0.7 to 7.0 mol kg−1. Precipitation sequences revealed that Ra co-precipitated with barite, even though the latter was a trace mineral compared to the precipitated gypsum. The concentration-based effective partition coefficient, , for the co-precipitation reaction was 1.04 ± 0.01. This value of is significantly lower than the value for relatively diluted solutions (1.8 ± 0.1). This low value of is mainly the result of a kinetic effect but is also slightly affected by the ionic strength.Both effects are quantitatively examined in the present paper. It is suggested that a kinetic effect influences the nucleation of (Ra,Ba)SO4, reducing the value of the partition coefficient. This kinetic effect is caused by the favorable nucleation of a more soluble phase (i.e., a phase with a higher BaSO4 fraction). An additional decrease in the partition coefficient results from the ionic strength effect. Considering the activity of Ra2+ and Ba2+ in the solution (rather than their concentration) makes it possible to determine the activity-based partition coefficient (), which accounts for the ionic strength effect. was calculated empirically from the experiments and theoretically via a kinetic model. The two derived values are consistent with one another and indicate the combined effect of ionic strength and precipitation kinetics.Finally, the common assumption that γRa2+/γBa2+=1 was re-examined using a numerical model to predict the experimental results. As the ionic strength increases, this assumption becomes less appropriate for predicting the change in as calculated in the experiments. Understanding the co-precipitation of Ra in such systems is crucial for risk assessments in which both Ra concentration and ionic strength are relatively high.  相似文献   
53.
As carbon dioxide and other greenhouse gases accumulate in the atmosphere and contribute to rising global temperatures, it is important to examine how derivative changes in climate may affect natural and managed ecosystems. In this series of papers, we study the impacts of climate change on agriculture, water resources and natural ecosystems in the conterminous United States using twelve scenarios derived from General Circulation Model (GCM) projections to drive biophysical impact models. These scenarios are described in this paper. The scenarios are first put into the context of recent work on climate-change by the IPCC for the 21st century and span two levels of global-mean temperature change and three sets of spatial patterns of change derived from GCM results. In addition, the effect of either the presence or absence of a CO2 fertilization effect on vegetation is examined by using two levels of atmospheric CO2 concentration as a proxy variable. Results from three GCM experiments were used to produce different regional patterns of climate change. The three regional patterns for the conterminous United States range from: an increase in temperature above the global-mean level along with a significant decline in precipitation; temperature increases in line with the global-mean with an average increase in precipitation; and, with a sulfate aerosol effect added to in the same model, temperature increases that are lower than the global-mean. The resulting set of scenarios span a wide range of potential climate changes and allows examination of the relative importance of global-mean temperature change, regional climate patterns, aerosol cooling, and CO2 fertilization effects.  相似文献   
54.
55.
While medical geography has grown eclectic to the point where a growing number of medical geographers prefer the terms health geographer, health geography, or the geography of health, schisms have nonetheless developed between Mayer et al. and those who have urged medical geographers to seek new epistemologies. Lost in this debate is the rapid and considerable growth of research by medical and health geographers. The author first reviews recent research on the mapping and modeling of diseases, then examines the literature on the access, delivery, and planning of health services. He then considers the debate over medical geography versus a geography of health. Opportunities are identified where medical, health, and population geographers can productively collaborate. Sharing many of the same theoretical and methodological strengths, weaknesses, and frustrations, medical, health, and population geographers need to work together toward creating inclusive geographies.  相似文献   
56.
Hydromagnetic wave and modulated particle precipitation data are reported from conjugate areas near the particledrift shell L ~ 4. A modulation of electrons precipitating from the magnetosphere is observed in the conjugate regions when the accompanying hydromagnetic wave period is ~ 90 s and the wave polarization is linear. When the wave period changes abruptly to ~ 30 s and the polarizations at the observing stations are no longer linear, the modulation of the precipitating electrons is no longer observed. The change in hydromagnetic wave characteristics does not appear to be related to interplanetary plasma and magnetic field conditions. Rather, it is proposed to arise from a change in the wave generation mechanism from an internal magnetospheric source near the inner edge of the plasmapause (lower frequency) to an externally driven source outside the magnetosphere (higher frequency). This observation of a change in the wave characteristics (frequency and polarization) associated with modulated electron precipitation appears to be related to two previous examples wherein modulated electron precipitation was reported to be closely associated with the existence of a wave resonance region near the observing site.  相似文献   
57.
The use of rotating modulation collimators in high resolution solar X-ray spectroscopy is discussed with reference to the recent flight of a sounding rocket payload. This rocket carried an experiment which combined a modulation collimator and a Bragg crystal spectrometer to make moderately high resolution spectral and spatial measurements simultaneously. The response of the instrument to extended sources is described. It is shown that the technique is particularly suited to long term observations of active region emission, but that useful measurements can be made even during a short rocket flight.Our observations were made in 1972 October 26 between 0432 UT and 0436 UT. During the flight a scan of the solar X-ray spectrum was made which covered the wavelength range 1.45–1.71 nm. A small flare commenced at about 0432 UT in McMath calcium plage region 12094; the emission from this provided the major contribution to the observed spectrum. X-ray emission from a group of active regions in the SW and the small McMath region 12090 has also been detected.Spectral and spatial observations have been combined to investigate the conditions in both active region and flare plasmas.  相似文献   
58.
The Solar Oscillations Investigation (SOI) uses the Michelson Doppler Imager (MDI) instrument to probe the interior of the Sun by measuring the photospheric manifestations of solar oscillations. Characteristics of the modes reveal the static and dynamic properties of the convection zone and core. Knowledge of these properties will improve our understanding of the solar cycle and of stellar evolution. Other photospheric observations will contribute to our knowledge of the solar magnetic field and surface motions. The investigation consists of coordinated efforts by several teams pursuing specific scientific objectives.The instrument images the Sun on a 10242 CCD camera through a series of increasingly narrow spectral filters. The final elements, a pair of tunable Michelson interferometers, enable MDI to record filtergrams with a FWHM bandwidth of 94 m. Normally 20 images centered at 5 wavelengths near the Ni I 6768 spectral line are recorded each minute. MDI calculates velocity and continuum intensity from the filtergrams with a resolution of 4 over the whole disk. An extensive calibration program has verified the end-to-end performance of the instrument.To provide continuous observations of the longest-lived modes that reveal the internal structure of the Sun, a carefully-selected set of spatial averages are computed and downlinked at all times. About half the time MDI will also be able to downlink complete velocity and intensity images each minute. This high rate telemetry (HRT) coverage is available for at least a continuous 60-day interval each year and for 8 hours each day during the rest of the year. During the 8-hour HRT intervals, 10 of the exposures each minute can be programmed for other observations, such as measurements in MDI's higher resolution (1.25) field centered about 160 north of the equator; meanwhile, the continuous structure program proceeds during the other half minute. Several times each day, polarizers will be inserted to measure the line-of-sight magnetic field.MDI operations will be scheduled well in advance and will vary only during the daily 8-hour campaigns. Quick-look and summary data, including magnetograms, will be processed immediately. Most high-rate data will be delivered only by mail to the SOI Science Support Center (SSSC) at Stanford, where a processing pipeline will produce 3 Terabytes of calibrated data products each year. These data products will be analyzed using the SSSC and the distributed resources of the co-investigators. The data will be available for collaborative investigations.The MDI Engineering Team leaders include: D. Akin, B. Carvalho, R. Chevalier, D. Duncan, C. Edwards, N. Katz, M. Levay, R. Lindgren, D. Mathur, S. Morrison, T. Pope, R. Rehse, and D. Torgerson.  相似文献   
59.
Crop growth models, used in climate change impact assessments to project production on a local scale, can obtain the daily weather information to drive them from models of the Earth's climate. General Circulation Models (GCMs), often used for this purpose, provide weather information for the entire globe but often cannot depict details of regional climates especially where complex topography plays an important role in weather patterns. The U.S. Pacific Northwest is an important wheat growing region where climate patterns are difficult to resolve with a coarse scale GCM. Here, we use the PNNL Regional Climate Model (RCM) which uses a sub-grid parameterization to resolve the complex topography and simulate meteorology to drive the Erosion Productivity Impact Calculator (EPIC) crop model. The climate scenarios were extracted from the PNNL-RCM baseline and 2 × CO2 simulationsfor each of sixteen 90 km2 grid cells of the RCM, with differentiation byelevation and without correction for climate biases. The dominant agricultural soil type and farm management practices were established for each grid cell. Using these climate and management data in EPIC, we simulated winter wheat production in eastern Washington for current climate conditions (baseline) and a 2 × CO2 `greenhouse' scenario of climate change.Dryland wheat yields for the baseline climate averaged 4.52 Mg ha–1 across the study region. Yields were zero at high elevations where temperatures were too low to allow the crops to mature. The highest yields (7.32 Mgha–1) occurred at intermediate elevations with sufficientprecipitation and mild temperatures. Mean yield of dryland winter wheat increased to 5.45 Mg ha–1 for the 2 × CO2 climate, which wasmarkedly warmer and wetter. Simulated yields of irrigated wheat were generally higher than dryland yields and followed the same pattern but were, of course, less sensitive to increases in precipitation. Increases in dryland and irrigated wheat yields were due, principally, to decreases in the frequency of temperature and water stress. This study shows that the elevation of a farm is a more important determinant of yield than farm location in eastern Washington and that climate changes would affect wheat yields at all farms in the study.  相似文献   
60.
The possible importance of SiF4 in volcanic and magmatic gases has been neglected due to the convention of reporting analyses and basing calculations on the presence of HF. Calculated HFSiF4 ratios for natural gas compositions serve to justify this convention by showing that SiF4 is not a significant F-bearing molecular species at high temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号