首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   2篇
测绘学   9篇
大气科学   14篇
地球物理   12篇
地质学   16篇
海洋学   1篇
天文学   41篇
  2022年   1篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   3篇
  2014年   5篇
  2013年   13篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   5篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
81.
Simulating the impacts of climate change on cotton production in India   总被引:1,自引:0,他引:1  
General circulation models (GCMs) project increases in the earth’s surface air temperatures and other climate changes by the mid or late 21st century, and therefore crops such as cotton (Gossypium spp L.) will be grown in a much different environment than today. To understand the implications of climate change on cotton production in India, cotton production to the different scenarios (A2, B2 and A1B) of future climate was simulated using the simulation model Infocrop-cotton. The GCM projections showed a nearly 3.95, 3.20 and 1.85 °C rise in mean temperature of cotton growing regions of India for the A2, B2 and A1B scenarios, respectively. Simulation results using the Infocrop-cotton model indicated that seed cotton yield declined by 477 kg?ha?1 for the A2 scenario and by 268 kg?ha?1 for the B2 scenario; while it was non-significant for the A1B scenario. However, it became non-significant under elevated [CO2] levels across all the scenarios. The yield decline was higher in the northern zone over the southern zone. The impact of climate change on rainfed cotton which covers more than 60 % of the country’s total cotton production area (mostly in the central zone) and is dependent on the monsoons is likely to be minimum, possibly on account of marginal increase in rainfall levels. Results of this assessment suggest that productivity in northern India may marginally decline; while in central and southern India, productivity may either remain the same or increase. At the national level, therefore, cotton production is unlikely to change with climate change. Adaptive measures such as changes in planting time and more responsive cultivars may further boost cotton production in India.  相似文献   
82.
An assessment of regional vulnerability of rice to climate change in India   总被引:1,自引:0,他引:1  
A simulation analysis was carried out using the InfoCrop-rice model to quantify impacts and adaptation gains, as well as to identify vulnerable regions for irrigated and rain fed rice cultivation in future climates in India. Climates in A1b, A2, B1 and B2 emission scenarios as per a global climate model (MIROC3.2.HI) and a regional climate model (PRECIS) were considered for the study. On an aggregated scale, the mean of all emission scenarios indicate that climate change is likely to reduce irrigated rice yields by ~4 % in 2020 (2010–2039), ~7 % in 2050 (2040–2069), and by ~10 % in 2080 (2070–2099) climate scenarios. On the other hand, rainfed rice yields in India are likely to be reduced by ~6 % in the 2020 scenario, but in the 2050 and 2080 scenarios they are projected to decrease only marginally (<2.5 %). However, spatial variations exist for the magnitude of the impact, with some regions likely to be affected more than others. Adaptation strategies comprising agronomical management can offset negative impacts in the near future—particularly in rainfed conditions—but in the longer run, developing suitable varieties coupled with improved and efficient crop husbandry will become essential. For irrigated rice crop, genotypic and agronomic improvements will become crucial; while for rainfed conditions, improved management and additional fertilizers will be needed. Basically climate change is likely to exhibit three types of impacts on rice crop: i) regions that are adversely affected by climate change can gain in net productivity with adaptation; ii) regions that are adversely affected will still remain vulnerable despite adaptation gains; and iii) rainfed regions (with currently low rainfall) that are likely to gain due to increase in rainfall can further benefit by adaptation. Regions falling in the vulnerable category even after suggested adaptation to climate change will require more intensive, specific and innovative adaptation options. The present analysis indicates the possibility of substantial improvement in yields with efficient utilization of inputs and adoption of improved varieties.  相似文献   
83.
In this study, an attempt has been made to derive the spatial patterns of temporal trends in phenology metrics and productivity of crops grown, at disaggregated level in Indo-Gangetic Plains of India (IGP), which are helpful in understanding the impact of climatic, ecological and socio-economic drivers. The NOAA-AVHRR NDVI PAL dataset from 1981 to 2001 was stacked as per the crop year and subjected to Savitzky-Golay filtering. For crop pixels, maximum and minimum values of normalized difference vegetation index (NDVI), their time of occurrence and total duration of kharif (June-October) and rabi (November–April) crop seasons were derived for each crop year and later subjected to pixel-wise regression with time to derive the rate and direction of change. The maximum NDVI value showed increasing trends across IGP during both kharif and rabi seasons indicating a general increase in productivity of crops. The trends in time of occurrence of peak NDVI during kharif dominated with rice showed that the maximum vegetative growth stage was happening early with time during study period across most of Punjab, North Haryana, Parts of Central and East Uttar Pradesh and some parts of Bihar and West Bengal. Only central parts of Haryana showed a delay in occurrence of maximum vegetative stage with time. During rabi, no significant trends in occurrence of peak NDVI were observed in most of Punjab and Haryana except in South Punjab and North Haryana where early occurrence of peak NDVI with time was observed. Most parts of Central and Eastern Uttar Pradesh, North Bihar and West Bengal showed a delay in occurrence of peak NDVI with time. In general, the rice dominating system was showing an increase in duration with time in Punjab, Haryana, Western Uttar Pradesh, Central Uttar Pradesh and South Bihar whereas in some parts of North Bihar and West Bengal a decrease in the duration with time was also observed. During rabi season, except Punjab, the wheat dominating system was showing a decreasing trend in crop duration with time.  相似文献   
84.
85.
The current study has used Synthetic Aperture Radar (SAR) satellite data to estimate the Snow Cover Area (SCA) in Manali watershed of Beas River in Northwest Himalayas of Himachal Pradesh, India. SAR data used in this study is of Radarsat-2 (RS2) and Environmental Satellite (ENVISAT), Advanced Synthetic Aperture Radar (ASAR). The SAR preprocessing was done with SAR image processing tools for converting raw SAR images into calibrated geo-coded backscatter images. Maps for forest, built area, layover and shadow were created and used for masking snow cover in these areas. The backscattering ratio of wet snow to reference image threshold method with value range from ?2 to ?3 db was used to estimate wet SCA for study area. In this technique, if the threshold is too high (≥-2 db) wet SCA is overestimated and if it is too low (≤-3db), this method underestimates the SCA. The wet SCA is under/over estimated (+6 % to?8 % on average) in late spring season due to the inherent terrain and SAR imaging effects of layover/foreshortening and shadow and also due to the masking of forest areas. Overall, the SCA derived from SAR data matches well when compared with total SCA derived from cloud free optical remote sensing data products, especially during wet season.  相似文献   
86.
New fully relativistic calculations of radiative rates and electron impact excitation cross-sections for Fe  xvi are used to determine theoretical emission-line ratios applicable to the 251–361 and 32–77 Å portions of the extreme-ultraviolet (EUV) and soft X-ray spectral regions, respectively. A comparison of the EUV results with observations from the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS) reveals excellent agreement between theory and experiment. However, for emission lines in the 32–49 Å portion of the soft X-ray spectral region, there are large discrepancies between theory and measurement for both a solar flare spectrum obtained with the X-Ray Spectrometer/Spectrograph Telescope (XSST) and for observations of Capella from the Low-Energy Transmission Grating Spectrometer (LETGS) on the Chandra X-ray Observatory . These are probably due to blending in the solar flare and Capella data from both first-order lines and from shorter wavelength transitions detected in second and third order. By contrast, there is very good agreement between our theoretical results and the XSST and LETGS observations in the 50–77 Å wavelength range, contrary to previous results. In particular, there is no evidence that the Fe  xvi emission from the XSST flare arises from plasma at a much higher temperature than that expected for Fe  xvi in ionization equilibrium, as suggested by earlier work.  相似文献   
87.
Recent R -matrix calculations of electron impact excitation rates for transitions among the 2s22p2, 2s2p3 and 2p4 levels of Fe  xxi are used to derive theoretical electron density ( N e) sensitive emission-line ratios involving 2s22p2–2s2p3 transitions in the ∼98–146Å wavelength range. A comparison of these with observations from the PLT tokamak plasma, for which the electron density has been independently determined, reveals generally very good agreement between theory and experiment, and in some instances removes discrepancies found previously. The observed Fe  xxi ratios for a solar flare, obtained with the OSO–5 satellite, imply electron densities which are consistent, with discrepancies that do not exceed 0.2 dex. In addition, the derived values of N e are similar to those estimated for the high-temperature regions of other solar flares. The good agreement between theory and observation, in particular for the tokamak spectra, provides experimental support for the accuracy of the present line-ratio calculations, and hence for the atomic data on which they are based.  相似文献   
88.
Effects of electron temperature on the propagation of electron acoustic solitary waves in plasma with stationary ions, cold and superthermal hot electrons is investigated in non-planar geometry employing reductive perturbation method. Modified Korteweg–de Vries equation is derived in the small amplitude approximation limit. The analytical and numerical calculations of the KdV equation reveal that the phase velocity of the electron acoustic waves increases as one goes from planar to non planar geometry. It is shown that the electron temperature ratio changes the width and amplitude of the solitary waves and when electron temperature is not taken into account,our results completely agree with the results of Javidan & Pakzad (2012). It is found that at small values of \(\tau \), solitary wave structures behave differently in cylindrical (\(\text {m} = 1\)), spherical (\(\text {m} = 2\)) and planar geometry (\(\text {m} = 0\)) but looks similar at large values of \(\tau \). These results may be useful to understand the solitary wave characteristics in laboratory and space environments where the plasma have multiple temperature electrons.  相似文献   
89.
Simultaneous observations were made of the Marine Boundary Layer at Tarapur, a site near Bombay on the sea coast, by acoustic sounder and instrumented tower. The meteorological tower was used to sense wind and temperature at various levels up to a height of 120 m while the acoustic sounder was used to examine the thermal structure of the boundary layer up to a height of 700 m. Data recorded for the year 1982 have been analysed.Analysis of the data shows that while the normal structures of thermal echoes and shear echoes represent the mixing depth of the atmospheric boundary layer, the often observed elevated layers are due to sea breeze reversals with their base giving a measure of the depth of the sea-breeze circulation during the day. A sea breeze has been detected during both spring (March to May) and autumn (October to December) months. The onset times are around 1000 hr during spring months and around noon during the autumn period, the height of development being respectively up to 500 and 350 m. The capability of the sodar to detect the base and thickness of the sea breeze, is clearly revealed.  相似文献   
90.
Measured concentration levels of carbon monoxide present in the atmosphere near the ground surface have been studied in relation to atmospheric stability inferred from acoustic sounder vis-à-vis the density of motor-vehicular traffic responsible for the emission of carbon monoxide gas. It has been seen that concentration levels of carbon monoxide during peak traffic hours depend on the prevailing stability of the atmosphere. The need for continuous monitoring of atmospheric stability at a place using acoustic sounder to assess air quality has been emphasized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号