首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80862篇
  免费   1755篇
  国内免费   853篇
测绘学   2051篇
大气科学   5983篇
地球物理   17107篇
地质学   28756篇
海洋学   6869篇
天文学   17473篇
综合类   399篇
自然地理   4832篇
  2022年   411篇
  2021年   761篇
  2020年   822篇
  2019年   887篇
  2018年   2535篇
  2017年   2313篇
  2016年   2578篇
  2015年   1569篇
  2014年   2375篇
  2013年   4101篇
  2012年   2960篇
  2011年   3685篇
  2010年   2873篇
  2009年   3852篇
  2008年   3536篇
  2007年   3303篇
  2006年   3137篇
  2005年   3355篇
  2004年   3405篇
  2003年   2959篇
  2002年   2232篇
  2001年   1948篇
  2000年   1851篇
  1999年   1477篇
  1998年   1560篇
  1997年   1455篇
  1996年   1176篇
  1995年   1198篇
  1994年   1015篇
  1993年   922篇
  1992年   902篇
  1991年   828篇
  1990年   912篇
  1989年   768篇
  1988年   691篇
  1987年   877篇
  1986年   703篇
  1985年   910篇
  1984年   989篇
  1983年   916篇
  1982年   880篇
  1981年   772篇
  1980年   720篇
  1979年   650篇
  1978年   662篇
  1977年   596篇
  1976年   587篇
  1975年   536篇
  1974年   541篇
  1973年   502篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
Remote sensing data products need to meet stringent geodetic and geometric accuracy specifications irrespective of intended user applications. Georeferencing is the basic processing step towards achieving this goal. Having known the imaging geometry and mechanism, the mathematical models built with the use of orbit and attitude information of the spacecraft can correct the remote sensing data for its geometric degradations only up to system level accuracy (IRS-P6 DP Team, 2000). The uncertainties in the orbit and attitude information will not allow the geometric correction model to generate products of accuracy that can meet user requirements unless Ground Control Points (GCP) are used as reference geo-location landmarks. IRS-P6 data processing team has been entrusted with developing a software system to generate data products that will have desired geodetic and geometric accuracies with known limitations. The intended software system is called the Value Added Data Products System (VADS). Precision corrected, Template Registered, Merged and Ortho Rectified products are the value added products planned with VADS.  相似文献   
912.
913.
The present work was aimed to compare the abilities of radar and optical satellite data to estimate crop canopy cover, which is a key component of productivity estimates. Three ERS-1 SAR images were obtained of East Anglia (UK) in 1995 and one ERS-2 SAR image in 1996. The images covered a study area around the IACR Brooms Barn Sugar Beet Research Institute. Field data comprising radiometric and biophysical measurements of the crop canopy were collected in two fields from June 22 to August 3, 1995 to coincide with ERS-1 SAR overpass dates. In 1996, field data were collected in two fields from June 11 to July 29 on a weekly basis. A previously calibrated version of the water cloud model was inverted to estimate Leaf Area Index (LAI) from ERS-1 and ERS-2 SAR backscatter and soil moisture samples. Canopy cover was estimated from the radar-estimated LAI using a standard exponential relationship that has a well-established coefficient for sugar beet. Radio-metrically and atmospherically corrected data from three SPOT images in 1995 and one SPOT image in 1996 were used to calculate the Optimised Soil Adjusted Vegetation Index (OSAVI), from which crop canopy cover was estimated using a relationship determined previously by canopy modelling. The crop cover values estimated by satellite were in good agreement with those measured on ground with the Parkinson radiometer. Radar data may be able to provide useful estimates of canopy cover for crop production modelling, especially in the case of loss of optical data due to cloud.  相似文献   
914.
915.
Uncertainties in polar motion and length-of-day measurements are evaluated empirically using several data series from the space-geodetic techniques of the global positioning system (GPS), satellite laser ranging (SLR), and very long baseline interferometry (VLBI) during 1997–2002. In the evaluation procedure employed here, known as the three-corner hat (TCH) technique, the signal common to each series is eliminated by forming pair-wise differences between the series, thus requiring no assumed values for the “truth” signal. From the variances of the differenced series, the uncertainty of each series can be recovered when reasonable assumptions are made about the correlations between the series. In order to form the pair-wise differences, the series data must be given at the same epoch. All measurement data sets studied here were sampled at noon (UTC); except for the VLBI series, whose data are interpolated to noon and whose UT1 values are also numerically differentiated to obtain LOD. The numerical error introduced to the VLBI values by the interpolation and differentiation is shown to be comparable in magnitude to the values determined by the TCH method for the uncertainties of the VLBI series. The TCH estimates for the VLBI series are corrupted by such numerical errors mostly as a result of the relatively large data intervals. Of the remaining data sets studied here, it is found that the IGS Final combined series has the smallest polar motion and length-of-day uncertainties.  相似文献   
916.
Low-low satellite-to-satellite tracking (ll-SST) range-rate observations have been predicted by two methods: one based on a linear perturbation theory in combination with the Hill equations, and one based on solving the equations of motion of two low-flying satellites by numerical integration. The two methods produce almost equivalent Fourier spectra of the range-rate observations after properly taking into account a few resonant terms. For a typical GRACE-type configuration, where the two satellites trail each other at a distance of 300 km at an altitude of 460 km, and in the presence of the EGM96 gravity field model, complete to spherical harmonic degree and order 70, the agreement between the Fourier spectra is about 1 mm/s compared to a root-mean-square (RMS) value of more than 220 mm/s for the range-rate signal. The discrepancy of 1 mm/s can be reduced significantly when not taking into account perturbations caused by the J2 term. Excluding the J2 term, the agreement between the two methods improves to 0.4 mm/s compared to a RMS value of 6 mm/s for the range-rate signal. These values are 0.01 and 2.3 mm/s when ignoring the spectrum for frequencies below two cycles per orbital revolution, reducing the discrepancy even further to about 0.5% of the signal. The selected linear perturbation theory is thus capable of modeling gravity field induced range-rate observations with very high precision for a large part of the spectrum.  相似文献   
917.
The satellite missions CHAMP, GRACE, and GOCE mark the beginning of a new era in gravity field determination and modeling. They provide unique models of the global stationary gravity field and its variation in time. Due to inevitable measurement errors, sophisticated pre-processing steps have to be applied before further use of the satellite measurements. In the framework of the GOCE mission, this includes outlier detection, absolute calibration and validation of the SGG (satellite gravity gradiometry) measurements, and removal of temporal effects. In general, outliers are defined as observations that appear to be inconsistent with the remainder of the data set. One goal is to evaluate the effect of additive, innovative and bulk outliers on the estimates of the spherical harmonic coefficients. It can be shown that even a small number of undetected outliers (<0.2 of all data points) can have an adverse effect on the coefficient estimates. Consequently, concepts for the identification and removal of outliers have to be developed. Novel outlier detection algorithms are derived and statistical methods are presented that may be used for this purpose. The methods aim at high outlier identification rates as well as small failure rates. A combined algorithm, based on wavelets and a statistical method, shows best performance with an identification rate of about 99%. To further reduce the influence of undetected outliers, an outlier detection algorithm is implemented inside the gravity field solver (the Quick-Look Gravity Field Analysis tool was used). This results in spherical harmonic coefficient estimates that are of similar quality to those obtained without outliers in the input data.  相似文献   
918.
A new generation of Earth gravity field models called GGM02 are derived using approximately 14 months of data spanning from April 2002 to December 2003 from the Gravity Recovery And Climate Experiment (GRACE). Relative to the preceding generation, GGM01, there have been improvements to the data products, the gravity estimation methods and the background models. Based on the calibrated covariances, GGM02 (both the GRACE-only model GGM02S and the combination model GGM02C) represents an improvement greater than a factor of two over the previous GGM01 models. Error estimates indicate a cumulative error less than 1 cm geoid height to spherical harmonic degree 70, which can be said to have met the GRACE minimum mission goals. Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   
919.
Geographic Information System (GIS) software is constrained, to a greater or lesser extent, by a static world view that is not well-suited to the representation of time (Goodchild 2000). Space Time Intelligence System (STIS) software holds the promise of relaxing some of the technological constraints of spatial only GIS, making possible visualization approaches and analysis methods that are appropriate for temporally dynamic geospatial data. This special issue of the Journal of Geographical Systems describes some recent advances in STIS technology and methods, with an emphasis on applications in public health and spatial epidemiology.The STIS expert workshops were funded in part by grants R01CA092669 and R01CA096002 from the National Cancer Institute, and by grants R43-ES010220 and R44-ES010220 from the National Institute of Environmental Health Sciences. Gillian AvRuskin provided cheerful editorial assistance. We thank the participants at the workshops for providing invaluable expertise and critical insights.  相似文献   
920.
The Abel inversion is a straightforward tool to retrieve high-resolution vertical profiles of electron density from GPS radio occultations gathered by low earth orbiters (LEO). Nevertheless, the classical approach of this technique is limited by the assumption that the electron density in the vicinity of the occultation depends only on height (i.e., spherical symmetry), which is not realistic particularly in low-latitude regions or during ionospheric storms. Moreover, with the advent of recent satellite missions with orbits placed around 400 km (such as CHAMP satellite), an additional issue has to be dealt with: the treatment of the electron content above the satellite orbits. This paper extends the performance study of a method, proposed by the authors in previous works, which tackles both problems using an assumption of electron-density separability between the vertical total electron content and a shape function. This allows introducing horizontal information into the classic Abel inversion. Moreover, using both positive and negative elevation data makes it feasible to take into account the electron content above the LEO as well. Different data sets involving different periods of the solar cycle, periods of the day and satellites are studied in this work, confirming the benefits of this improved Abel transform approach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号