首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   11篇
  国内免费   26篇
测绘学   1篇
大气科学   66篇
地球物理   1篇
地质学   21篇
海洋学   2篇
综合类   1篇
自然地理   8篇
  2022年   3篇
  2021年   7篇
  2020年   9篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   8篇
  2015年   10篇
  2014年   7篇
  2013年   7篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   6篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1994年   4篇
  1992年   1篇
  1991年   2篇
  1985年   1篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
71.
Coupled seasonal variability in the South China Sea   总被引:2,自引:0,他引:2  
The present study documents the relationship between seasonal variations in sea surface temperature (SST) and precipitation in the South China Sea (SCS) region. There are strong interactions between the atmosphere and ocean in the seasonal variations of SST and precipitation. During the transition to warm and cold seasons, the SST tendency is primarily contributed by net heat flux dominated by shortwave radiation and latent heat flux with a complementary contribution from ocean advection and upwelling. The contribution of wind-driven oceanic processes depends on the region and is more important in the northern SCS than in the southern SCS. During warm and cold seasons, local SST forcing contributes to regional precipitation by modulating the atmospheric stability and lower-level moisture convergence. The SST difference between the SCS and the western North Pacific influences the convection over the SCS through its modulation of the circulation pattern.  相似文献   
72.
73.
The sea surface temperature anomaly pattern differs between the central Pacific (CP) and eastern Pacific (EP) El Niños during boreal summer. It is expected that the respective atmospheric response will be different. In order to identify differences in the responses to these two phenomena, we examine the Community Atmosphere Model Version 4 simulations forced with observed monthly sea surface temperature during 1979–2010 and compare with the corresponding observations. For CP El Niño, a triple precipitation anomaly pattern appears over East Asia. During EP El Niño, the triple pattern is not as significant as and shifts eastward and southward compared to CP El Niño. We also examine the influence of CP La Niña and EP La Niña on East Asia. In general, the impact of CP (EP) La Niña on tropics and East Asia seems to be opposite to that of CP (EP) El Niño. However, the impacts between the two types of La Niña are less independent compared to the two types of warm events. Both types of El Niño (La Niña) correspond to a stronger (weaker) western North Pacific summer monsoon. The sensitivity experiments support this result. But the CP El Niño (La Niña) may have more significant influence on East Asia summer climate than EP El Niño (La Niña), as the associated low-level anomalous wind pattern is more distinct and closer to the Asian continent compared to EP El Niño (La Niña).  相似文献   
74.
Winter-spring precipitation in southern China tends to be higher (lower) than normal in El Niño (La Niña) years during 1953–1973. The relationship between the southern China winter-spring precipitation and El Niño-Southern Oscillation (ENSO) is weakened during 1974–1994. During 1953–1973, above-normal southern China rainfall corresponds to warmer sea surface temperature (SST) in the equatorial central Pacific. There are two anomalous vertical circulations with ascent over the equatorial central Pacific and ascent over southern China and a common branch of descent over the western North Pacific that is accompanied by an anomalous lower-level anticyclone. During 1974–1994, above-normal southern China rainfall corresponds to warmer SST in eastern South Indian Ocean and cooler SST in western South Indian Ocean. Two anomalous vertical circulations act to link southern China rainfall and eastern South Indian Ocean SST anomalies, with ascent over eastern South Indian Ocean and southern China and a common branch of descent over the western North Pacific. Present analysis shows that South Indian Ocean SST anomalies can contribute to southern China winter-spring precipitation variability independently. The observed change in the relationship between southern China winter-spring rainfall and ENSO is likely related to the increased SST variability in eastern South Indian Ocean and the modulation of the Pacific decadal oscillation.  相似文献   
75.
Sea surface temperature (SST) variations include negative feedbacks from the atmosphere, whereas SST anomalies are specified in stand-alone atmospheric general circulation simulations. Is the SST forced response the same as the coupled response? In this study, the importance of air–sea coupling in the Indian and Pacific Oceans for tropical atmospheric variability is investigated through numerical experiments with a coupled atmosphere-ocean general circulation model. The local and remote impacts of the Indian and Pacific Ocean coupling are obtained by comparing a coupled simulation with an experiment in which the SST forcing from the coupled simulation is specified in either the Indian or the Pacific Ocean. It is found that the Indian Ocean coupling is critical for atmospheric variability over the Pacific Ocean. Without the Indian Ocean coupling, the rainfall and SST variations are completely different throughout most of the Pacific Ocean basin. Without the Pacific Ocean coupling, part of the rainfall and SST variations in the Indian Ocean are reproduced in the forced run. In regions of large mean rainfall where the atmospheric negative feedback is strong, such as the North Indian Ocean and the western North Pacific in boreal summer, the atmospheric variability is significantly enhanced when air–sea coupling is replaced by specified SST forcing. This enhancement is due to the lack of the negative feedback in the forced SST simulation. In these regions, erroneous atmospheric anomalies could be induced by specified SST anomalies derived from the coupled model. The ENSO variability is reduced by about 20% when the Indian Ocean air–sea coupling is replaced by specified SST forcing. This change is attributed to the interfering roles of the Indian Ocean SST and Indian monsoon in western and central equatorial Pacific surface wind variations.  相似文献   
76.
Peculiar temporal structure of the south china sea summer monsoon   总被引:8,自引:0,他引:8  
Beijing located at the junction of four major components of the Asian-Australia monsoon system (the Indian, the western North Pacific, the East Asian subtropical, and the Indonesian-Australian monsoons), the monsoon cli-mate over the South China Sea (SCS) exhibits some unique features. Evidences are presented in this paper to reveal and document the following distinctive features in the temporal structure of the SCS summer monsoon:(1) pronounced monsoon singularities in the lower tropospheric monsoon flows which include the pre-onset and withdrawal easterly surges and the southwesterly monsoon bursts at Julian pentad 34-35 (June 15-24) and pentad 46-47 (August 14-23);(2) four prominent subseasonal cycles (alternative occurrences of climatological active and break monsoons);(3) considerably larger year-to-year variations in convective activity on intraseasonal time scale compared to those over the Bay of Bengal and the Philippine Sea;(4) the redness of the climatological mean spectrum of precipitation / deep convection on synoptic to intraseasona] time scales in the central SCS;(5) a remarkable asymmetry in the seasonal transitions between summer and winter monsoons and an extremely abrupt mid-May transition (the outburst of monsoon rain and the sudden switch in tie lower troposphere winds from an easterly to a westerly regime);(6) the bi-modal interannual variation of summer monsoon onset (normal and delayed modes).In addition, the monsoon rainfall displays enormous east-west gradient over the central SCS. Possible causes for these features are discussed. A number of specific science questions concerning some of the peculiar features are raised for the forthcoming SCS monsoon experiment to address  相似文献   
77.
Zuo  Renguang  Kreuzer  Oliver P.  Wang  Jian  Xiong  Yihui  Zhang  Zhenjie  Wang  Ziye 《Natural Resources Research》2021,30(5):3059-3079
Natural Resources Research - GIS-based mineral prospectivity mapping (MPM) is a computer-aided methodology for delineating and better constraining target areas deemed prospective for mineral...  相似文献   
78.
The present study investigates meteorological conditions for the day-to-day changes of particulate matter (PM) concentration in Beijing city during the period 2008–2015. The local relationship of PM concentration to surface air temperature, pressure, wind speed, and relative humidity displays seasonal changes and year-to-year variations. The average correlation coefficient with PM10 in spring, summer, fall, and winter is 0.45, 0.40, 0.38, and 0.30 for air temperature; –0.45, –0.05, –0.40, and –0.45 for pressure; 0.13, 0.04, 0.53, and 0.50 for relative humidity; and –0.18, –0.11, –0.45, and –0.33 for wind speed. A higher correlation with wind speed is obtained when wind speed leads by half a day. The heavily polluted and clean days, which are defined as the top and bottom 10% of the PM values, show obvious differences in the regional distribution of air temperature, pressure, and wind. Polluted days correspond to higher air temperature in all the four seasons, lower sea level pressure and anomalous southerly winds to the south and east of Beijing in spring, fall, and winter, and a northwest–southeast contrast in the pressure anomaly and anomalous southerly winds in summer. Higher relative humidity is observed on polluted days in fall and winter. The polluted days are preceded by an anomalous cyclone moving from the northwest, accompanied by lower pressure and higher air temperature, in all four seasons. This feature indicates the impacts of moving weather systems on local meteorological conditions for day-to-day air quality changes in Beijing.  相似文献   
79.
The Indian and East Asian summer monsoons are two components of the whole Asian summer monsoon system.Previous studies have indicated in-phase and out-of-phase variations between Indian and East Asian summer rainfall.The present study reviews the current understanding of the connection between Indian and East Asian summer rainfall.The review covers the relationship of northern China,southern Japan,and South Korean summer rainfall with Indian summer rainfall;the atmospheric circulation anomalies connecting Indian and East Asian summer rainfall variations; the long-term change in the connection between Indian and northern China rainfall and the plausible reasons for the change; and the influence of ENSO on the relationship between Indian and East Asian summer rainfall and its change.While much progress has been made about the relationship between Indian and East Asian summer rainfall variations,there are several remaining issues that need investigation.These include the processes involved in the connection between Indian and East Asian summer rainfall,the non-stationarity of the connection and the plausible reasons,the influences of ENSO on the relationship,the performance of climate models in simulating the relationship between Indian and East Asian summer rainfall,and the relationship between Indian and East Asian rainfall intraseasonal fluctuations.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号