首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   11篇
  国内免费   26篇
测绘学   1篇
大气科学   65篇
地球物理   1篇
地质学   21篇
海洋学   2篇
综合类   1篇
自然地理   8篇
  2022年   3篇
  2021年   6篇
  2020年   9篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   8篇
  2015年   10篇
  2014年   7篇
  2013年   7篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   6篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1994年   4篇
  1992年   1篇
  1991年   2篇
  1985年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
71.
Identifying geochemical anomalies from background is a fundamental task in exploration geochemistry. The Gangdese mineral district in western China has complex geochemical surface expression due to complex geological background and was chosen as a study area for recognition of the spatial distribution of geochemical elements and separating anomalies from background using stream sediment geochemical data. The results illustrate that weak anomalies are hidden within the strong variance of background and are not well identified by means of inverse distance weighted; neither are they clearly identified by the C–A method if this method is applied to the whole study area. On the other hand, singularity values provide new information that complements use of original concentration values and can quantify the properties of enrichment and depletion caused by mineralization. In general, producing maps of singularities can help to identify relatively weak metal concentration anomalies in complex geological regions. Application of singularity mapping technique in Gangdese district shows local anomalies of Cu are not only directly associated with known deposits in the central part of the study area, but also with E–W and N–E oriented faults in the north of the study area. Both types of anomalies should be further investigated for undiscovered Cu mineral deposits.  相似文献   
72.
The present study investigates the interdecadal change in the relationship between southern China (SC) summer rainfall and tropical Indo-Pacific sea surface temperature (SST). It is found that the pattern of tropical Indo-Pacific SST anomalies associated with SC summer rainfall variability tends to be opposite between the 1950–1960s and the 1980-1990s. Above-normal SC rainfall corresponds to warmer SST in the tropical southeastern Indian Ocean (SEIO) and cooler SST in the equatorial central Pacific (ECP) during the 1950–1960s but opposite SST anomalies in these regions during the 1980–1990s. A pronounced difference is also found in anomalous atmospheric circulation linking SEIO SST and SC rainfall between the two periods. In the 1950–1960s, two anomalous vertical circulations are present between ascent over SEIO and ascent over SC, with a common branch of descent over the South China Sea that is accompanied by an anomalous low-level anticyclone. In the 1980–1990s, however, a single anomalous vertical circulation directly connects ascent over SC to descent over SEIO. The change in the rainfall–SST relationship is likely related to a change in the magnitude of SEIO SST forcing and a change in the atmospheric response to the SST forcing due to different mean states. A larger SEIO SST forcing coupled with a stronger and more extensive western North Pacific subtropical high in recent decades induce circulation anomalies reaching higher latitudes, influencing SC directly. Present analysis shows that the SEIO and ECP SST anomalies can contribute to SC summer rainfall variability both independently and in concert. In comparison, there are more cases of concerted contributions due to the co-variability between the Indian and Pacific Ocean SSTs.  相似文献   
73.
Sea surface temperature (SST) variations include negative feedbacks from the atmosphere, whereas SST anomalies are specified in stand-alone atmospheric general circulation simulations. Is the SST forced response the same as the coupled response? In this study, the importance of air–sea coupling in the Indian and Pacific Oceans for tropical atmospheric variability is investigated through numerical experiments with a coupled atmosphere-ocean general circulation model. The local and remote impacts of the Indian and Pacific Ocean coupling are obtained by comparing a coupled simulation with an experiment in which the SST forcing from the coupled simulation is specified in either the Indian or the Pacific Ocean. It is found that the Indian Ocean coupling is critical for atmospheric variability over the Pacific Ocean. Without the Indian Ocean coupling, the rainfall and SST variations are completely different throughout most of the Pacific Ocean basin. Without the Pacific Ocean coupling, part of the rainfall and SST variations in the Indian Ocean are reproduced in the forced run. In regions of large mean rainfall where the atmospheric negative feedback is strong, such as the North Indian Ocean and the western North Pacific in boreal summer, the atmospheric variability is significantly enhanced when air–sea coupling is replaced by specified SST forcing. This enhancement is due to the lack of the negative feedback in the forced SST simulation. In these regions, erroneous atmospheric anomalies could be induced by specified SST anomalies derived from the coupled model. The ENSO variability is reduced by about 20% when the Indian Ocean air–sea coupling is replaced by specified SST forcing. This change is attributed to the interfering roles of the Indian Ocean SST and Indian monsoon in western and central equatorial Pacific surface wind variations.  相似文献   
74.
Peculiar temporal structure of the south china sea summer monsoon   总被引:8,自引:0,他引:8  
Beijing located at the junction of four major components of the Asian-Australia monsoon system (the Indian, the western North Pacific, the East Asian subtropical, and the Indonesian-Australian monsoons), the monsoon cli-mate over the South China Sea (SCS) exhibits some unique features. Evidences are presented in this paper to reveal and document the following distinctive features in the temporal structure of the SCS summer monsoon:(1) pronounced monsoon singularities in the lower tropospheric monsoon flows which include the pre-onset and withdrawal easterly surges and the southwesterly monsoon bursts at Julian pentad 34-35 (June 15-24) and pentad 46-47 (August 14-23);(2) four prominent subseasonal cycles (alternative occurrences of climatological active and break monsoons);(3) considerably larger year-to-year variations in convective activity on intraseasonal time scale compared to those over the Bay of Bengal and the Philippine Sea;(4) the redness of the climatological mean spectrum of precipitation / deep convection on synoptic to intraseasona] time scales in the central SCS;(5) a remarkable asymmetry in the seasonal transitions between summer and winter monsoons and an extremely abrupt mid-May transition (the outburst of monsoon rain and the sudden switch in tie lower troposphere winds from an easterly to a westerly regime);(6) the bi-modal interannual variation of summer monsoon onset (normal and delayed modes).In addition, the monsoon rainfall displays enormous east-west gradient over the central SCS. Possible causes for these features are discussed. A number of specific science questions concerning some of the peculiar features are raised for the forthcoming SCS monsoon experiment to address  相似文献   
75.
The Indian and East Asian summer monsoons are two components of the whole Asian summer monsoon system.Previous studies have indicated in-phase and out-of-phase variations between Indian and East Asian summer rainfall.The present study reviews the current understanding of the connection between Indian and East Asian summer rainfall.The review covers the relationship of northern China,southern Japan,and South Korean summer rainfall with Indian summer rainfall;the atmospheric circulation anomalies connecting Indian and East Asian summer rainfall variations; the long-term change in the connection between Indian and northern China rainfall and the plausible reasons for the change; and the influence of ENSO on the relationship between Indian and East Asian summer rainfall and its change.While much progress has been made about the relationship between Indian and East Asian summer rainfall variations,there are several remaining issues that need investigation.These include the processes involved in the connection between Indian and East Asian summer rainfall,the non-stationarity of the connection and the plausible reasons,the influences of ENSO on the relationship,the performance of climate models in simulating the relationship between Indian and East Asian summer rainfall,and the relationship between Indian and East Asian rainfall intraseasonal fluctuations.  相似文献   
76.
The present study investigates meteorological conditions for the day-to-day changes of particulate matter (PM) concentration in Beijing city during the period 2008–2015. The local relationship of PM concentration to surface air temperature, pressure, wind speed, and relative humidity displays seasonal changes and year-to-year variations. The average correlation coefficient with PM10 in spring, summer, fall, and winter is 0.45, 0.40, 0.38, and 0.30 for air temperature; –0.45, –0.05, –0.40, and –0.45 for pressure; 0.13, 0.04, 0.53, and 0.50 for relative humidity; and –0.18, –0.11, –0.45, and –0.33 for wind speed. A higher correlation with wind speed is obtained when wind speed leads by half a day. The heavily polluted and clean days, which are defined as the top and bottom 10% of the PM values, show obvious differences in the regional distribution of air temperature, pressure, and wind. Polluted days correspond to higher air temperature in all the four seasons, lower sea level pressure and anomalous southerly winds to the south and east of Beijing in spring, fall, and winter, and a northwest–southeast contrast in the pressure anomaly and anomalous southerly winds in summer. Higher relative humidity is observed on polluted days in fall and winter. The polluted days are preceded by an anomalous cyclone moving from the northwest, accompanied by lower pressure and higher air temperature, in all four seasons. This feature indicates the impacts of moving weather systems on local meteorological conditions for day-to-day air quality changes in Beijing.  相似文献   
77.
78.
Zuo  Renguang  Kreuzer  Oliver P.  Wang  Jian  Xiong  Yihui  Zhang  Zhenjie  Wang  Ziye 《Natural Resources Research》2021,30(5):3059-3079
Natural Resources Research - GIS-based mineral prospectivity mapping (MPM) is a computer-aided methodology for delineating and better constraining target areas deemed prospective for mineral...  相似文献   
79.
证据权模型作为一种数据综合方法已被广泛应用于矿产资源定量预测与评价。在模糊证据权基础上,发展了基于地质单元思想的矢量证据图层构建和数据综合方法,并通过实例作具体阐述:它以矿点缓冲区图层作为训练图层,以各证据变量图层在空间上的叠置所形成的唯一地质单元作为评价对象,统一计算各个证据变量的证据权重,进而基于地质单元进行证据综合和后验概率成图。与基于栅格(或规则格网)的模型不同,基于矢量证据权模型以具有明确地质内涵的地质单元(而非规则网格单元)为预测单元,易于解释,并且消除了边界误差;相比基于规则格网划分所得到的成矿单元,以矿床(点)缓冲区作为训练对象,提高了已知矿点的代表性。实例表明:若预测单元大小为初始栅格大小整数倍,各缓冲等级平均面积计算误差为0.26%,否则面积平均误差达到6%;即使在预测单元大小为初始栅格大小整数倍情况下,矿点平均计算误差也达到4.78%。因此,基于地质单元思想的证据权预测单元划分方法在精度上优于基于栅格或规则格网方法。  相似文献   
80.
ENSO循环与亚、澳季风和南、北方涛动的关系   总被引:10,自引:0,他引:10  
陈烈庭  吴仁广 《气象学报》2000,58(2):168-178
文中从研究 ENSO循环的成因出发 ,分析了厄尔尼诺 ( El Nino)和拉尼娜 ( La Nina)的产生与西太平洋暖池地区西风异常的关系 ;在此基础上 ,探讨了西太平洋西风异常的形成和变化与亚洲和澳大利亚冬季风的关系 ;最后 ,分析了亚、澳冬季风的活动 ,西太平洋西风异常的形成和东传 ,以及厄尔尼诺和拉尼娜的交替出现等现象与南方涛动和北方涛动传播波的联系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号